FAA-73-23.II

REPORT NO. FAA-RD-73-112,II

NORTH ATLANTIC (NAT) AIDED INERTIAL NAVIGATION SYSTEM SIMULATION

Volume II: Computer Program NATNAV User's Manual

William C. Hoffman Kathryn G. Bowie

JULY 1973
FINAL REPORT

DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD. VIRGINIA 22151.

```
Prepared for
DEPARTMENT OF TRAMSPORTATION
FEDERAL AVIATION ADMINISTRATION Systems Research and Development Service Washington DC 20590
```

,

TECHNICAL REPORT STANDARD TItLE PaC; F

Form DOT F 1700.7 (8-69)

PREFACE

This report was prepared by Aerospace Systems, Inc. (ASI), Burlington, Massachusetts, for the Department of Transportation under Contract No. DOT-TSC473. The study was sponsored by the Traffic Programs Division of the Transportation Systems Center (TSC), Cambridge, Massachusetts. Mr. Gilbert A. Gagne served as Technical Monitor on the contract.

This is the second volume of the two-volume final report, which documents the results of research performed during the contract period June 1972 to January 1973. Volume I is the Final Technical Report; Volume II is a user's manual for the digital computer simulation program NATNAV.

The effort was directed by Mr. John Zvara, President and Technical Director of ASI. Mr. William C. Hoffman served as Principal Investigator. Professor Walter M. Hollister and Dr. Kenneth R. Britting, both in the Department of Aeronautics and Astronautics at the Massachusetts Institute of Technology (MIT), contributed to the study as technical consultants and co-investigators. Professor Robert W. Simpson, Director of the MIT Flight Transportation Laboratory, and Arthur E. Bryson, Jr., Chairman, Department of Aeronautics and Astronautics, Stanford University, also served as technical consultants.

The authors are indebted to Mr. James Hauser, of the Naval Research Laboratory (NRL) Electromagnetic Propagation Branch, for his assistance during the final implementation of the program on the NRL CDC-3800 computer. We are also grateful to the staff of the NRL Research Computation Center for their support and cooperation.

table of CONTENTS

Section12PROGRAM OPERATION89
9.1 Program Options 89
9.2 Execution Time 93
9.3 Diagnostics 93
PROGRAM RESTRICTIONS ANDMODIFICATIONS95
11 PROGRAM LISTING 101
REFERENCES 149

LIST OF FIGURES

Figure Page
Modular Structure of Program NATNAV 4
Flow Chart of Main Program NATNAV 13
Flow Chart of Subroutine SUBIN 15
Flow Chart of Subroutine SUBCUT 16
Flow Chart of Subroutine CONFIG 17
Flow Chart of Subroutine EQNS 18
Flow Chart of Subroutine FLTPLN 19
Flow Chart of Function A 20
Flow Chart of Subroutine EARTH 21
Flow Chart of Subroutine INS 22
Flow Chart of Subroutine ALIGN 23
Flow Chart of Subroutina DOPLP 24
Flow Chart of Subroutine OMEG 25
Flow Chart of Subroutine SATR 26
Flow Chart of Subroutine UPDATE 27
Flow Chart of Subroutine RKUTTA 28
Flow Chart of Subroutine DIFEQ 29
Flow Chart of Function T 30
Flow Chart of Function GQG 31
Flow Chart of Subroutine BLUNDR 32
Flow Chart of Subroutine PLOTER 33
Printout for NATNAV Sample Case 77
Plotted Output for NATNAV Sample Case 87
Program NATNAV Deck Structure 90

LIST OF TABLES

Table Page
NATNAV Program Abstracts 5
Program NATNAV External References 7
Fortran Library Routines 9
Program NATNAV Common Block Organization 36
Common Block Contents and Lengths 37
Definitions of Principal Fortran Variables in Program NATNAV 42
Correspondence of Elements of Index Array KK to Row and Column of Covariance Matrix P 54
Program NATNAV Core Requirements 56
Logical Unit Assignments 57
NATNAV Input Structure 60
Input Data for NATNAV Sample Case 73

SECTION 1

INiRODUCTION

This report describes the digital computer simulation program NATNAV (North ATlantic NAVigation) which was developed by Aerospace Systems, Inc. (ASI) to analyze various inertial aircraft navigation systems utilizing external measurements of position and/or velocity from the following sources:

- Doppler Radar
- Air Data
- OMEGA
- Satellite Surveillance (2-satellite ranging)

The companion volume to this report (Ref. 1) contains a complete description of the mathematical models and analysis techniques implemented in the NATNAV simulation. It also presents a discussion of several results obtained with the simulation and some recommendations for applications of NATNAV. The availability of Volume 1, and the user's familiarity with it, are presupposed in this report.

NATNAV is written entirely in Fortran IV for operation on the CDC-3800 digital computer at the Naval Research Laboratory (Refs. 2 and 3). Slightly modified versions have been run on PDP-10 and CDC-6600 computers. The program was developed with a highly modular structure for ease of program checkout, to simplify the user's. understanding of the program, and to facilitate any modifications which might be required for future applications.

Sections 2 through 5 contain programming details of the simulation: functions of the various routines, flow charts, common storage and definition of Fortran variables. The usage of the program is presented in Sections 6 through 9, which describe the

- hardware requirements, the inputs and outputs, program options and operating procedures. Certain restrictions and potential modifications are discussed in Section 10. Finally, a complete listing of the Fortran source program is contained in Section 11.

SECTION 2

PROGRAM DESCRIPTION

The following discussion is presented to provide the user with an understanding of the organization and general operation of Program NATNAV. The modular structure of NATNAV is illustrated by the block diagram of Figure 1. Each subroutine and function is indicated, and the arrows show the calling sequences among the programs. Brief abstracts of each program are presented in Table 1. Table 2 summarizes all external references in NATNAV, excluding system routines. The Fortran library routines indicated in Table 2 are defined in Table 3.

Figure 1. Modular Structure of Program NATNAV.

Table 1. NATNAV Program Abstrarts.

NATNAV Initializes the simulation, regulates the integration of the covariance terms, controls the measurement updates and governs the print and plot autputs. [Main Program]

SUBIN Reads all input data and documents it on the printed output. [Called by NATNAV]

SUBOUT Prints time histories of the position and velocity errors in trackreferenced coordinates. Also saves data for plotting at completion of run. [Called by NATNAV and SUBIN]

EQNS Initializes the array of covariance elements to be propagated, and sets the indices for integrating the appropriate differential equations. [Called by CONFIG]

CONFIG Establishes the array of covariance elements to be integrated for the system configuration selected by the user. [Called by NATNAV]

FLTPLN Calculates the nominal position, speed, track and heading of the aircraft as functions of time, assuming constant velocity between waypoints. [Called by NATNAV]

EARTH Calculates the approximate geocentric distance and gravitational acceleration as functions of lattitude and altitude. [Called by FLTPLN]

A

INS

ALIGN

DOPLR Calculates the measurement vectors and optimal filter gains for doppler radar measurements. [Called by NATNAV]

OMEG Calculates the measurement vectors and optimal filter gains for two Omega line-of-position measurements. [Called by NATNAV]

Calculates the measurement vectors and optimal filter gains for two satellite ranging measurements. [Called by NATNAV]

Table 1. (Continued).

UPDATE Updates the covariance matrix for optimum or sub-optimum measurements. Stores optimum filter gains for print out if desired. [Called by ALIGN, DOPLR, OMEG, SATR]

RKUTTA Integrates the covariance differential equations using a fourth-order Runge-Kutta procedure. [Called by NATNAV]

DIFEQ Calculates the derivatives of the covariance elements. [Called by RKUTTAl

T Calculates the elements of the matrix product $\mathrm{F} \times \mathrm{P}$. [Called by DIFEQ]

GQG Calculates the elements of the noise matrix product $G \times Q \times G^{\top}$. [Called by DIFEQ]

BLUNDR Sets the new system error quantities after the occurence of a specified blunder or malfunction. Supplied by user. [Called by NATNAV]

PLOTER Plots the time histories of the position and velocity errors in trackreferenced coordinates, if desired. [Called by NATNAV]

Table 2. Program NATNAV External References*.

ROUTINE	SUBROUTINE REFERENCES			LIBRARY ROUTINE REFERENCES	
NATNAV	ALIGN CONFIG DOPLR FLTPN	INS OMEG PLOTR RKUTTA	SATR SUBIN sUBOUT	AMINI DATE TIMEF	
SUBIN					
SUBOUT				$\begin{aligned} & \text { INT } \\ & \text { SQRT } \end{aligned}$	
CONFIG	EQNS				
EQNS					
FLTPLN	A	EARTH		ASIN ATAN2 COS	LOG SIN SQRT
EARTH				SIN	
A				SQRT	
INS				cos	SIN
ALIGN	UPDATE				
DOPLR	UPDATE			\cos	SIN
OMEG	UPDATE			ATAN2 \cos	SIN
SATR	UPDATE			$\begin{aligned} & \mathrm{COS} \\ & \mathrm{SIN} \end{aligned}$	SQRT
UPDATE					
RKUTTA	DIFEQ				
DIFEQ	GQG	T			
*xcluding System Routines.					

Table 2. (Continued) *.

ROUTINE	SUBROUTINE REFERENCES	LIBRARY ROUTINE REFERENCES	
T			
GQG			
PLOTER		AXIS	PLOT
		LINE SYMBOL	PLOTS
		NUMBER	SCALE

*Excluding System Routines.

Table 3. Fortran Library Routines.

AMINT (x_{1}, x_{2}, \ldots)	Determines minimum argument [Called by NATNAV]
ASIN (x)	Arcsine of x [Called by EARTH, FLTPLN]
$\operatorname{ATAN} 2\left(x_{1}, x_{2}\right)$	Arctangent of $\frac{x_{1}}{x_{2}}$ [Called by FLTPLN, OMEG]
AXIS	Plots axis with lable, tick marks, and tick mark annotation [Called by PLOTER]
$\cos (\mathrm{x})$	Cosine of \times [Called by FLTPLN, INS, DOPLR, OMEG, SATR]
DATE*	Current month, day, year, and Julian day [Called by NATNAV]
INT	Real to integer conversion [Called by SUBOUT]
LINE	Plots x vs y curve [Called by PLOTER]
LOG (x)	Natural \log of x [Called by FLTPLN]
NUMBER	Draws a special number [Called by PLOTER]
PLOT	Conveys data to the subroutine for plotting [Called by PLOTER]
PLOTS	Initializes entry for plotter package or erases plotter package [Called by PLOTER]
SCALE	Scales an array to produce an axis with reasonable engineering units [Called by PLOTER]
SIN (x)	Sine of x [Called by EARTH,FLTPLN, INS, DOPLR, OMEG, SATR]
SQRT (x)	Square root of x [Called by SUBOUT, FLTPLN, A, SATR]
SYMBOL	Labels plot or plots symbols for data points [Called by PLOTER]
TIMEF	Current time in floating point format [Called by NATNAV]

[^0]
$=$

SECTION 3

FLOW CHARTS

The following pages present narrative flow charts for each routine in Program NATNAV. These flow charts are included to show the organization and logic of NATNAV, and to assist the user in following the detailed program listing. The flow chart of the main program, NATNAV, will provide the user with a general understanding of the overall simulation procedure. More detailed operations are furnished by the individual subroutine and function flow charts.

Figure 2. Flow Chart of Main Program NATNAV.

Figure 3. Flow Chart of Subroutine SUBIN.

Figure 4. Flow Chart of Subroutine SUBOUT.

Figure 5. Flow Chart of Subroutine CONFIG.

Figure 6. Flow Chart of Subroutine EQNS.
$:$

Figure 7. Flow Chart of Subroutine FLTPLN.

Figure 8. Flow Chart of Function A.

Figure 9. Flow Chart of Subroutine EARTH.

Figure 10. Flow Chart of Subroutine INS.

Figure 11. Flow Chart of Subroutine ALIGN.

Figure 12. Flow Chart of Subroutine DOPLR.

Figure 13. Flow Chart of Subroutine OMEG.

Figure 14. Flow Chart of Subroutine SATR.

Figure 15. Flow Chart of Subroutine UPDATE.

Figure 16. Flow Chart of Subroutine RKUTTA.

Figure 17. Flow Chart of Subroutine DIFEQ.

Figure 18. Flow Chart of Function T.

Figure 19. Flow Chart of Function GQG.

Figure 20. Flow Chart of Subroutine BLUNDR.

Figure 21. Flow Chart of Subroutine PLOTER.

SECTION 4

COMMON STORAGE

In keeping with the modularity goal of NATNAV, most related Fortran variables used by more than one program are organized into a number of common blocks, as shown in Table 4. The Fortran variables contained in each common block, and the lengths of each (in decimal), are given in Table 5.

Table 4．Program NATNAV Common Block Organization．

$\begin{aligned} & \text { SUB- } \\ & \text { ROU- } \\ & \text { TINES } \end{aligned}$	COMMON BLOCK																						
	$\frac{\underset{\sim}{z}}{\frac{0}{J}}$	$\underset{\infty}{\stackrel{\rightharpoonup}{㐅}}$	$\begin{aligned} & \text { 分 } \\ & Z \\ & 0 \\ & u \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \substack{1 \\ \stackrel{a}{0} \\ 0 \\ 0 \\ \hline} \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & z \\ & \frac{z}{x} \\ & \frac{y}{c} \\ & \hline ⿱ 亠 凶 禸 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \underset{Z}{Z} \\ & \stackrel{Z}{4} \\ & \frac{1}{\infty} \end{aligned}\right.$		$\frac{-}{\bar{z}}$	$\frac{\overline{\mathrm{z}}}{\bar{\infty}}$	$\begin{gathered} N \\ \frac{N}{\infty} \\ \hline \end{gathered}$	$\frac{n}{n}$	$\begin{gathered} 0 \\ \stackrel{u}{2} \\ \underset{\sim}{n} \end{gathered}$	$\begin{aligned} & \text { U } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\rightharpoonup}{\infty}$	\sum_{0}^{\sum}	$\begin{aligned} & \mathbb{4} \\ & 0 \\ & \text { W } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} \stackrel{\circ}{0} \\ \stackrel{\rightharpoonup}{\infty} \end{gathered}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \substack{0 \\ 0} \end{aligned}$	$\sum_{\infty}^{\mathrm{L}}$	$\left\lvert\, \begin{gathered} \underset{\sim}{w} \\ \stackrel{\rightharpoonup}{\underset{~}{e}} \\ \hline \end{gathered}\right.$	苌
NATNAV	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
SUBIN	x	x			x	x	x			x	x		x	X	x		X	x	x	x		x	
SUBOUT		x	x	x						X	x			x	x	x		x			x	x	
CONFIG								x					x	x									
EQNS				x				x					x										
FLTPLN			x				x		x							x							
EARTH																X							
A																							
INS		x	x	x		x			x	x	x	x		x		x					x		
ALIGN	x		x	x					X							x							x
DOPLR			x	x	x				x					x		x							x
OMEG			x	x					x							x	x						x
SATR			x	x					x					x		x			x				X
UPDATE				x				x					x	x						x	x		X
RKUTTA				x				x					x								x		
DIFEQ				x									x										
				x	x					x	x	x		x		X	x		x				
GQG					x					x	x	x				x	x		x				
BLUNDR	X	x	x	X	x	x	x							x			x		x				
PLOTER																		x				X	

Table 5. Common Block Contents and Lengths.

BALIGN	(4)	$\begin{aligned} & \text { SALIN1 } \\ & \text { RALIN2 } \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \end{aligned}$	SALIN2	(1)	RALIN1	(1)
BALT	(4)	TAUH SALTD	$\begin{aligned} & (1) \\ & (1) \end{aligned}$	SALT	(1)	TAUHD	(1)
BCONST	(6)	RADPDG NMPFT	$\begin{aligned} & (1) \\ & (1) \end{aligned}$	DEGPRD MINPRD	(1) (1)	FTPNM OMIE	$\begin{aligned} & (1) \\ & (1) \end{aligned}$
BCOVAR	(1156)	P	(1156)				
BDOPLR	(13)	TDF SNDS SRDF QDF RDS	(1) (1) (1) (1) (1)	$\begin{aligned} & \text { TDS } \\ & \text { SBDF } \\ & \text { SRDS } \\ & \text { QDS } \end{aligned}$	(1) (1) (1) (1)	SNDF SBDS DTDOP RDF	(1) (1) (1) (1)
BDRKN	(4)	SVWN DVWE	(I) (i)	SVWE	(1)	DVWN	(1)
BFLTPN	(149)	DTA VCL HCR LON TCR VE	(1) (1) (1) (20) (1) (20)	DTT RC NWPTS THETAW TM	(1) (1) (1) (20) (20)	$H \varnothing$ MCR LAT VW VN	(1) (1) (20) (20) (20)
BINDEX	(1755)	11	(585)	JJ	(585)	KK	(585)
BINIT	(1)	INIT	(1)				
BINSI	(16)	ISYS EDØ RDLA \varnothing RDHø OMS2 FD	(1) (1) (1) (1) (1) (1)	EEø DLAø RDLOめ AKAP FN	(1) (1) (1) (1) (1)	$\begin{aligned} & \text { EN } \varnothing \\ & \text { DLO } \varnothing \\ & \text { DH } \\ & \text { PHIDOT } \\ & \text { FE } \end{aligned}$	(1) (1) (1) (1) (1)

Table 5. (Continued).

BINS2	(37)	TGX QWGX SGX QVGX TAX QWAX SAX QVAX TAUX DX SVX QVX QWH	(1) (1)	TGY QWGY SGY QVGY TAY QWAY SAY QVAY TAUY DY SVY QVY	(1) (1) (1) (1) (1) (I) (1) (1) (I) (1) (1) (1)	TGZ QWGZ SGZ QVGZ TAZ QWAZ SAZ QVAZ TAUZ DZ SVZ QVZ	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
BINS3	(40)	C 11 C21 C31 F12 F21 F32 F63 F67 F71 F76 F79 F94 F98 WZ	(1) (1)	C 12 C22 C32 F13 F23 F37 F64 F68 F73 F77 F91 F96 WX	(1) (I) (1) (1) (1) (1)	Cl 3 C23 C33 F17 F31 F62 F66 F69 F74 F78 F92 F97 WY	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
BINTEG	(1173)	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} T \varnothing 5 \end{aligned}$	$\begin{aligned} & \text { (585) } \\ & (1) \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \mathrm{NEQ} \end{aligned}$	$\begin{aligned} & (585) \\ & (1) \end{aligned}$	DT	(1)
BLOGIC	(12)	GYROS ALTSF TWOACC SATRNG	(1) (1) (1) (1)	ACCEL GRAVD DOPLER SUBOPT	(1) (1) (1) (1)	TORQ INS9 OMEGA DREKON	(1) (1) (1) (1)
BLU	(2)	NN	(1)	MM	(1)		

Table 5. (Continued).

BNOM	(35)	NPHASE ALATR ALONR VG VELE HDG R G TL CLI STRK SHDG	$\begin{aligned} & (1) \\ & (1) \\ & (1) \\ & (1) \\ & (1) \\ & (1) \\ & (1) \\ & (1) \\ & (1) \\ & (1) \\ & (1) \\ & (1) \end{aligned}$	H ALAT ALB VA VELW CRB RI SL SL2 RICLI ALAT2 RCL	(1) (1)	HDOT ALON ALBDOT VELN TRK THW RI2 CL CL2 CTRK CHDG	(1) (1) (1) (1) (I) (1) (1) (1) (1) (1) (1)
BOMEGA	(17)	IOMI IOM4 SNOMI SBOM2 DTOM ROMI	(1) (1) (1) (1) (1) (1)	IOM2 TOM1 SNOM2 SROM1 QOMI ROM2	(1) (1) (1) (1) (I) (1)	IOM3 TOM2 SBOM 1 SROM2 QOM2	(1) (1) (1) (1) (1)
BPLOT	(3)	DTPLOT	(1)	NPLOT	(1)	NTAPE	(1)
BSATR	(19)	SATLAT TSAT 1 SNSAT2 SRSAT 1 QSATI RSAT2	(2) (1) (1) (1) (1) (I)	SATLON TSAT2 SBSATI SRSAT2 QSAT2	(2) (1) (1) (1) (1)	HSAT SNSATI SBSAT2 DTSAT RSATI	$\begin{aligned} & \text { (2) } \\ & \text { (1) } \end{aligned}$
BSUBOP	(4103)	NK KSUBDS KSUBSI TBLUND	(1) (680) (680) (1)	TSUBK KSUB $\varnothing 1$ KSUBS2	$\begin{aligned} & (20) \\ & (680) \\ & (680) \end{aligned}$	KSUBDF KSUBø2 PGAINS	$\begin{aligned} & (680) \\ & (680) \\ & (1) \end{aligned}$
BTIME	(1)	TIME	(1)				
BTITLE	(17)	TITLE DTOUT IDAY	$\begin{aligned} & (10) \\ & (1) \\ & (1) \end{aligned}$	NRUN LINE IYEAR	$\begin{aligned} & (1) \\ & (1) \\ & (1) \end{aligned}$	NPAGE MO	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \end{aligned}$
BUPDAT	(36)	ALFA	(1)	KOPT	(34)	MTYPE	(1)

SECTION 5

FORTRAN VARIABLES

Table 6 presents definitions of all principal Fortran variables used in Program NATNAV. Where appropriate, mathematical definitions are also indicated (see Ref. 1). The units of each variable are those used internally by NATNAV, and occasionally differ from the input units. The points of definition of each variable are enclosed in the brackets.

The error covariance matrix P is a 34×34 symmetric matrix; hence it contains only 585 independent elements which must be calculated by numerical integration. These elements are contained in the array S. To further reduce the number of differential equations to be integrated, the array S contains only the covariances of those errors which are specifically requested by the input. The correspondence is established by subroutines CONFIG and EQNS via the index array KK. The arrays II and JJ are used to decode an entry in KK to obtain the appropriate row and column of P. Table 7 depicts this relationship.

Example: \quad If $\mathrm{KK}(70)=99$, then from Table $6 \mathrm{~A}, \mathrm{II}(99)=7$ and $\mathrm{JJ}(99)=18$. Therefore, $\mathrm{S}(70)=\mathrm{P}(7,18)=$ cross-covariance between longitude rate error, i, and azimuth gyro torquer scale factor error, τ_{z}.

Table 6. Definitions of Principal Fortran Variables in Progiam NATNAV.

A	$=$	local speed of sound, $\mathrm{ft} / \mathrm{min}$ [A]
ACCEL	$=$.TRUE. for accelerometer measurement uncertainties [input card 5]
AKAP	$=$	$\kappa=$ inertial altitude weighting parameter [input card 7]
AL1	$=$	$\dot{i}\left(\dot{\lambda}+w_{i e}\right), \mathrm{rad}^{2} / \min ^{2}[\mathrm{INS}]$
ALAT	$=$	$\mathrm{L}=$ terrestrial latitude, rad [FLTPLN]
ALON	$=$	$\ell=$ terrestrial longitude, rad [FLTPLN]
ALAT2	=	2L, rad [FLTPLN]
ALATD	$=$	$\mathrm{L}=$ terrestrial latitude, deg [SUBOUT]
ALOND	$=$	$\ell=$ terrestrial longitude, deg [SUBOUT]
ALATR	=	$\dot{L}=$ terrestrial latitude rate, $\mathrm{rad} / \mathrm{min}$ [FLTPLN]
ALONR	$=$	$\dot{l}=$ terrestrial longitude rate, $\mathrm{rad} / \mathrm{min}$ [FLTPLN]
ALB	=	$\lambda=$ celestial longitude, rad [FLTPLN]
ALBDOT	$=$	$\dot{\lambda}=\dot{i}+\omega_{\mathrm{ie}}=$ celestial longitude rate, $\mathrm{rad} / \mathrm{min}$ [FLTPLN]
ALFA	$=$	$\alpha=h^{\top} \mathrm{Ph}+\mathrm{R}$ [ALIGN, DOPLR, OMEG, SATR]
ALPHA	=	$\theta-X, \operatorname{rad}$ [FLTPLN]
ALT	=	$h=$ altitude, ft [EARTH]
ALTSF	$=$.TRUE. for altimeter scale factor [input card 5]
AX, AY	$=$	coordinate of lower left corner of first character with respect to previously defined origin for plotting routine, in [PLOTER]
AXLEN, AYLEN	$=$	lengths of x and y axes for plotting routine, in [PLOTER]
AZA, AZB	$=$	azimuth to Omega stations, rad [OMEG]
C	$=$	latitude sensitivity factor for gravitational acceleration [EARTH]
$\begin{aligned} & \mathrm{C} 11, \mathrm{C} 12, \\ & \ldots . \mathrm{C} 33 \end{aligned}$	$=$	elements of 1.N.S. transformation matrix [INS]

Table 6. (Continued).

CH 2		$\cos ^{2} x$ [SUBOUT]
CHDG		$\cos \psi$ [INS]
CL	$=$	$\cos L$ [INS]
CL2	$=$	$\cos 2 \mathrm{~L}$ [INS]
CLB	$=$	$\cos \lambda$ [INS]
CLI	$=$	1/cos L. [INS]
CLL	$=$	$\cos ^{2} \mathrm{~L}$ [SUBOUT]
CLOM(1)	$=$	cosine of the $i^{\text {th }}$ Omega station latitude [OMEG]
CPTIME	$=$	computer time, sec [NATNAV]
CRB	$=$	$\delta=$ wind crab angle, rad [FLTPLN]
CRSAT(I)	$=$	distance of $\mathrm{i}^{\text {th }}$ satellite from earth's axis, ft [SATR]
CTRK	$=$	$\cos X$ [INS]
DALT	$=$	σ of altitude error, ft [SUBOUT]
DEGPRD	$=$	conversion factor, $57.29578 \mathrm{deg} / \mathrm{rad}$ [SUBOUT]
DHØ	$=$	initial σ of altitude error, ft [input card 8]
DLA2	$=$	variance of latitude error, rad^{2} [SUBOUT]
$\begin{aligned} & \text { DLAø, } \\ & \text { DLOø } \end{aligned}$	$=$	initial σ^{\prime} 's of latitude and longitude error, rad [input card 8]
DLAT	$=$	latitude difference between waypoints, rad [FLTPLN]
DLON	$=$	longitude difference between waypoints, rad [FLTPLN] longitude difference to satellite, rad [SATR]
DLめ2	$=$	variance of longitude error, rad^{2} [SUBOUT]
DOPLER	$=$.TRUE. for Doppler measurements [input card 5]
DREKON	$=$.TRUE. for dead reckoning option [input card 5]
DT	$=$	integration step-size, min [NATNAV]

Table 6. (Continued).

DT1 $=$ maximum integration step-size, min [input card 2]
DT $\varnothing 5=D T / 2, \min [F L T P L N]$
DTA $=1$. N.S. alignment time, min [input card 3]
DTDOP $=$ interval between Doppler updates, \min [input card 19]
DTOM $=$ interval between Omega updates, min [input card 21]
DTOUT $=$ normal printout interval, min [input card 2]
DTPLOT $=$ plot output interval, min [input card 2]
DTSAT $=$ interval between satellite ranging updates, min [input card 23]
DTT $=$ taxi time, min [input card 3]
DVD $\quad=\quad \sigma$ of altitude rate error, $\mathrm{ft} / \mathrm{min}$ [SUBOUT]
DVE2 $=$ variance of latifude rate error, $\mathrm{rad} / \mathrm{min}$ [SUBOUT]
DVN2 $=$ variance of longitude rate error, $\mathrm{rad} / \mathrm{min}$ [SUBOUT]
DVX,DVY = increments for tick mark annotation of abscissa and ordinate [PLOTER]

DX,DY = distance between tick marks of abscissa and ordinate, in [PLOTER]
$\mathrm{DX}, \mathrm{DY}, \mathrm{DZ}=$ correlation distances for geodetic uncertainties, nm [input card 15]
$=$ inverse of above, $1 / \mathrm{ft}$ [INS]
DXDOT $=\sigma$ of along-track velocity error, nm [SUBOUT]
DYDOT $=\sigma$ of cross-track velocity error, nm [SUBOUT]
DVWN, $=$ correlation distances of wind uncertainties for dead-reckoning, DVWE $\quad \mathrm{nm}$ [input card 6]
$=$ inverse of above, $1 / \mathrm{ft}$ [INS]
ED \varnothing, EE $\varnothing,=$ initial σ^{\prime} 's of platform north, east and down misalignment angles, ENめ rad [input card 8]
$\mathrm{ED}, \mathrm{EE}, \mathrm{EN}=\sigma^{\prime} \mathrm{s}$ of platform misalignment angles, arc-min [SUBOUT]
F $=$ flattening of reference earth ellipsoid [EARTH]

Table 6. (Continued).

F12, $\ldots=$ elements of inertial navigation system matrix [INS] F98
$\mathrm{FD}, \mathrm{FE}, \mathrm{FN}=$ specific force components, $\mathrm{ft} / \mathrm{min}^{2}$ [INS]
FTPMS $=$ conversion factor, $983.567 \mathrm{ft} / \mathrm{msec}$ [SATR]
FTPNM $=$ conversion factor, $6076.12 \mathrm{ft} / \mathrm{nm}$ [NATNAV]
$\mathrm{G}=$ gravitational acceleration, $\mathrm{ft} / \mathrm{min}^{2}$ [EARTH]
GE $=$ equitorial gravitational acceleration, $\mathrm{ft} / \mathrm{min}^{2}$ [EARTH]
GRAVD $=$.TRUE. for geodetic uncertainties [input card 5]
GYROS $=$.TRUE. for gyro drift uncertainties [input card 6]
$\mathrm{H}=\mathrm{h}=$ altitude of aircraft, ft [FLTPLN]
H3, \ldots H8 = elements of measurement geometry vector [ALIGN,DOPLR,OMEG, H22, ... SATR]
H26
$\mathrm{H} \varnothing$ = $\quad \mathrm{h}_{0}=$ airport elevation, ft [input card 3]
HCR $=h_{c r}=$ aircraft cruise altitude, ft [input card 3]
HDG $\quad=\quad \psi$ = heading angle of aircraft, rad [FLTPLN]
HDOT $=\dot{h}=$ altitude rate, $\mathrm{ft} / \mathrm{min}$ [FLTPLN]
$\operatorname{HSAT}(\mathrm{I})=$ altitude of the $\mathrm{i}^{\text {th }}$ satellite, ft [SATR]
HSYNCH $=$ altitude for synchronous satellite, ft [SATR]
IDAY, $=$ date of computer run [NATNAV]
MONTH,
IYEAR
$11, J J, K K=\begin{aligned} & \text { indices relating elements of covariance matrix to differential } \\ & \text { equations [EQNS] }\end{aligned}$
INIT = .TRUE. if program is in initialization phase [NATNAV]
INS9 = .TRUE. for 9-state I.N.S. model [SUBIN]
.FALSE. for 7 -state I.N.S. model

Table 6. (Continued).

1OM1, IOM2		Omega stations for 1st L.O.P. measurement [input card 20]
$\begin{aligned} & 10 \mathrm{M3} \\ & \text { OM4 } \end{aligned}$	$=$	Omega stations for 2nd L. O.P. measurement [input card 20]
ISYS	$=$	type of inertial navigation system: $1=$ space stabilized [input card 7] $2=$ local level $3=$ free azimuth $4=$ strapdown $5=$ rotating azimuth $6=$ unipolar $7=$ wander azimuth
KOPT	=	optimum filter gains for covariance update [ALIGN,DOPLR, OMEG, SATR]
KSUB	$=$	suboptimum filter gains for covariance update [UPDATE]
KSUBø1, KSUBø2	$=$	histories of suboptimum filter gains for Omega updates [input cards 36-45]
KSUBDF, KSUBDS	=	histories of suboptimum filter gains for Doppler updates [input cards 26-35]
KSUBSI, KSUBS2	=	histories of suboptimum filter gains for satellite ranging updates [input cards 46-55]
LAT(1)	$=$	latitude of $\mathrm{i}^{\text {th }}$ waypoint, rad [input card 4]
LINE	=	count of printout lines for each page [NATNAV, SUBIN, SUBOUT]
LON(1)	=	longitude of $\mathrm{i}^{\text {th }}$ waypoint, rad [input card 4]
MCR	=	aircraft cruise Mach number [input card 3]
MEAS	$=$	index for subroutine SUBOUT to determine printout format [NATNAV]
MINPRD	=	conversion factor, $3437.747 \mathrm{arc}-\mathrm{min} / \mathrm{rad}$ [NATNAV]
MM	$=$	logical unit number for printout [NATNAV]
MPLOT	$=$	number of runs to be plotted in a job [NATNAV]
MTYPE	$=$	index for UPDATE to indicate type of measurement [ALIGN, DOPLR,OMEG , SATR]

Table 6. (Continued).

MU	=	flag to indicate climb (1) or cruise (0) phase during initialization [FLTPLN]
NEQ	$=$	number of differential equations to be integrated for covariance matrix propagation [EQNS]
NK	$=$	number of points in suboptimal filter gain histories ($N K \leq 20$) [input card 24]
NMPFT	$=$	conversion factor, $1.64579 \times 10^{-4} \mathrm{~nm} / \mathrm{ft}$ [NATNAV]
NN	$=$	logical unit number for input [NATNAV]
NPAGE	$=$	count of number of printout pages [NATNAV, SUBIN, SUBOUT]
NPHASE	$=$	$\text { index to current phase of flight: } \begin{aligned} 0 & =1 . N . S . \text { alignment [FLTPLN] } \\ 1 & =\text { taxi } \\ 2 & =\text { climbout } \\ 3 & =\text { cruise } \\ & 4=\text { end of flight } \end{aligned}$
NPLOT	$=$	number of points in plot arrays [NATNAV, SUBOUT]
NPTS	$=$	number of points in plot arrays [PLOTER]
NRUN	$=$	run number [input card 2]
NTAPE	$=$	magnetic tape used to store data for plotting [NATNAV]
NWPTS	$=$	number of waypoints in flight plan [input card 3]
OMEGA	=	.TRUE. for Omega measurements [input card 5]
OMIE	$=$	$\omega_{i e}=$ earth angular velocity, rad/min [FLTPLN]
OMIPNX, OMIPNY, OMIPNZ	$=$	rotation rate of platform coordinates relative to inertial space [INS]
OMLAT(I), OMLON(I)	=	latitude and longitude coordinates of $i^{\text {th }}$ Omega station, rad [OMEG]
OMS2	$=$	$\omega_{\mathrm{s}}{ }^{2}=$ square of Schuler frequency, $(\mathrm{rad} / \mathrm{min})^{2}$ [INS]
P		error covariance matrix [multiple programs]

Table 6. (Continued).

PGAINS	$=$	flag to cause printout of optimum filter gains at completion of run; no printout if PGAINS $=0$ [SUBIN]
PHIDOT	$=$	```\dot{\phi}=\mathrm{ azimuth rotation rate of 1.N.S., rad/min [input card 7,} INS]```
PHVEL	$=$	phase velocity of Omega signals, $\mathrm{ft} / \mathrm{\mu sec}$ [OMEG]
LTAPE	$=$	plot output tape [PLOTER]
PLTARRAY	$=$	buffer array for plot routines [PLOTER]
PSI	$=$	ψ = platform rotation angle, rad [INS]
PSIDOT	=	$\dot{\psi}=$ platform rotation rate, $\mathrm{rad} / \mathrm{min}$ [INS]
QDF, QDS	$=$	driving noises for exponentially correlated Doppler measurement errors, $\mathrm{ft}^{2} / \mathrm{min}^{3}$ [DOPLR]
$\begin{aligned} & \text { QOM1, } \\ & \text { QOM2 } \end{aligned}$	$=$	driving noises for exponentially correlated Omega measurement errors, $\mu \mathrm{sec} 2 / \mathrm{min}$ [OMEG]
$\begin{aligned} & \text { QSAT1, } \\ & \text { QSAT2 } \end{aligned}$	$=$	driving noises for exponentially correlated satellite ranging measurement errors, $\mathrm{ft}^{2} / \mathrm{min}$ [SATR]
QUIT	=	.TRUE. if last run has been processed [SUBIN]
QVAX, QVAY, QVAZ	$=$	driving noises for exponentially correlated accelerometer errors, $\mathrm{ft}^{2} / \mathrm{min}^{5}$ [INS]
QVGX, QVGY, QVGZ	$=$	driving noises for exponentially correlated gyro drift errors, $\mathrm{rad}^{2} / \mathrm{min}^{3}$ [INS]
$\begin{aligned} & . Q_{Q X, Q V Y,} \\ & \text { QVZ } \end{aligned}$	$=$	driving noises for exponentially correlated geodetic errors, $\mathrm{ft}^{2} / \min ^{5}$ [INS]
QWAX, QWAY, QWAZ	$=$	strength of white accelerometer measurement uncertainties, $\mathrm{ft}^{2} /$ min 3 [input cards 12, 13]
QWAX, QWAY	$=$	driving noises for exponentially correlated winds (dead-reckoning option), $\mathrm{ft}^{2} / \mathrm{min}^{3}$ [INS]

Table 6. (Continued).

QWGX, QWGY, QWGZ		strength of white gyro drift noises, $\mathrm{rad}^{2} / \mathrm{min}$ [input cards 10,11]
QWH	$=$	variance of altimeter random error, ft^{2} [INS]
R	$=$	$\mathrm{r}=$ geocentric radius to aircraft, ft [FLTPLN]
RADPDG	$=$	conversion factor, $0.01745329 \mathrm{rad} / \mathrm{deg}$ [NATNAV]
RALIN1, RALIN2	$=$	variances of alignment noises, $(\mathrm{ft} / \mathrm{min})^{2}$ [ALIGN]
RC	$=$	aircraft rate of climb, $\mathrm{ft} / \mathrm{min}$ [input card 3]
RCL	$=$	$\mathrm{r} \cos \mathrm{L}, \mathrm{ft}$ [INS]
RDF,RDS	$=$	variances of random Doppler measurement errors, $(\mathrm{ft} / \mathrm{min})^{2}$ [DOPLR]
RDHØ	=	initial σ of altitude rate error, $\mathrm{ft} / \mathrm{min}$ [input card 9]
RDLAø, RDLO	$=$	initial σ 's of latitude and longitude rate errors, rad $/ \mathrm{min}$ [input card 8]
RE	$=$	equatorial radius of earth, ft [EARTH]
RI	$=$	$1 / \mathrm{r}, \mathrm{ft}^{-1}$ [INS]
RI2	$=$	$1 / \mathrm{r}^{2}, \mathrm{ft}^{-2}$ [INS]
RICLI	$=$	$\mathrm{l} /(\mathrm{r} \cos \mathrm{L}), \mathrm{ft}^{-1}$ [INS]
RNM	$=$	geocentric radius to aircraft, nm [SUBOUT]
ROMI, ROM2	$=$	variances of random Omega measurement noises, $\mu \mathrm{sec}^{2}$ [OMEG]
RPSN	=	line-of-sight vector to satellite, ft [SATR]
RSAT1,	$=$	variances of random satellite ranging measurement noises, ft^{2} [SATR]
RSYNCH	$=$	geocentric radius to synchronous satellite, ft [SATR]
S	$=$	array of independent terms of covariance matrix [EQNS, RKUTTA UPDATE]

Table 6. (Continued).

$\begin{aligned} & \text { SALIN1, } \\ & \text { SALIN2 } \end{aligned}$	$=$	σ^{\prime} s of alignment random errors, $\mathrm{ft} / \mathrm{min}$ [input card 16]
SALT	$=$	σ of altimeter random noise, ft [input card 17]
SALTD	=	σ of altitude rate random noise, $\mathrm{ft} / \mathrm{min}$ [input card 17]
SATLON(1)	$=$	longitude coordinate of $\mathrm{i}^{\text {th }}$ satellite, rad [input card 22]
SATRNG	$=$.TRUE. for satellite ranging measurements [input card 5]
$\begin{aligned} & \text { SAX, SAY, } \\ & \text { SAZ } \end{aligned}$	$=$	initial σ 's of accelerometer measurement uncertainties, $\mathrm{ft} / \mathrm{min}^{2}$ [input card 12]
SBDF, SBDS	$=$	σ 's of forward and side Doppler scale factor errors [input card 18]
$\begin{aligned} & \text { SBOM1, } \\ & \text { SBOM2 } \end{aligned}$	$=$	σ 's of 1st and 2nd Omega L.O.P. bias measurement errors, $\mu \mathrm{sec}$ [input card 20]
$\begin{aligned} & \text { SBSAT1, } \\ & \text { SBSAT2 } \end{aligned}$	=	σ 's of satellite ranging biases, ft [input card 22]
SD	$=$	derivative of S [DIFEQ]
$\begin{aligned} & \text { SGX,SGY, } \\ & \text { SGZ } \end{aligned}$	$=$	initial σ 's of exponentially-correlated gyro drift rates, rad $/ \mathrm{min}$ [input card 10]
SH2	$=$	$\sin ^{2} x$ [SUBOUT]
SHDG	$=$	$\sin \psi[I N S]$
SL	$=$. $\sin \mathrm{L}$ [INS]
SL2	=	$\sin 2 \mathrm{~L}$ [INS]
SLOM(1)	=	sine of $\mathrm{i}^{\text {th }}$ Omega station latitude [[OMEG]
$\begin{aligned} & \text { SNDF, } \\ & \text { SNDS } \end{aligned}$	=	σ 's of forward and side Doppler correlated noises, $\mathrm{ft} / \mathrm{min}$ [input card 18]
SNOMI, SNOM2	$=$	σ 's of 1st and 2nd Omega L.O.P. correlated measurement errors, $\mu \mathrm{sec}$ [input card 20]
SNSATI, SNSAT2	=	σ 's of satellite ranging correlated noise, ft [input card 22]

Table 6. (Continued).

SRDF, SRDS	=	σ 's of Doppler forward and side random measurement noises, $\mathrm{ft} / \mathrm{min}$ [input card 18]
SROM1, SROM2	=	o's of 1 st and 2nd Omega L.O.P. random measurement noises, Hsec [input card 21]
SRSAT(I)	$=$	distance of $\mathrm{i}^{\text {th }}$ satellite north of equator, ft [SATR]
$\begin{aligned} & \text { SRSAT1, } \\ & \text { SRSAT2 } \end{aligned}$	$=$	σ 's of satellite ranging random measurement noises, ft [input card 23]
STAT	$=$	Hollerith array for printout of OMEGA stations [SUBIN]
STRK	=	$\sin \mathrm{X}$ [INS]
SUBOPT	$=$.TRUE. for suboptimum filtering [input card 5]
SVWE, SVWN	$=$	σ 's of correlated wind uncertainties (dead-reckoning option), $\mathrm{ft} / \mathrm{min}$ [input card 6]
$\begin{aligned} & \text { SVX, SVY, } \\ & \text { SVZ } \end{aligned}$	$=$	initial σ 's of geodetic uncertainties, $\mathrm{ft} / \mathrm{min}^{2}$ [input card 15]
T, TIME	=	$t=$ elapsed time, min [NATNAV, RKUTTA]
TAUH	$=$	σ of altimeter scale factor error [input card 17]
TAUHD	$=$	σ of altitude rate scale factor error, [input card 17]
TAUX, TAUY, TAUZ	$=$	σ 's of gyro torquer scale factor errors [input card 14]
$\begin{aligned} & \text { TAX, TAY, } \\ & \text { TAZ } \end{aligned}$	$=$	correlation times for accelerometer measurement uncertainties, \min [input card 12]
TBLUND	=	time at which blunder/malfunction occurs, min [input card 24]
TCR	=	time at which cruise phase begins, min [FLTPLN]
TDF,TDS	=	correlation times for forward and sidewise Doppler measurement errors, min [input card 18]
TF	=	time at final waypoint, min [NATNAV]
$\begin{aligned} & \text { TGX,TGY, } \\ & \text { TGZ } \end{aligned}$	$=$	gyro drift correlation times, min [input card 10]

Table 6. (Continued).

THETAW(1)	$=$	wind direction at $i^{\text {th }}$ waypoint, rad [input card 4]
THW	$=$	$\theta=$ current wind direction, rad [FLTPLN]
TIMEH, TIMEM	$=$	time in hours and minutes [SUBOUT]
title	$=$	output heading [input card 1]
TL	$=$	$\tan \mathrm{L}$ [INS]
TM(1)	=	arrival time at $i^{\text {th }}$ waypoint, \min [FLTPLN]
$\begin{aligned} & \text { TOM1, } \\ & \text { TOM2 } \end{aligned}$	=	correlation times for 1st and 2nd Omega L.O.P. measurement errors, min [input card 20]
TORQ	=	.TRUE. for gyro torque scale factor errors [input card 5]
TOS	$=$	Hollerith array for printout of type of I.N.S. [SUBIN]
TPSI	=	time of previous platform rotation update, min [INS]
TRK	=	$x=$ aircraft track angle, rad [FLTPLN]
$\begin{aligned} & \text { TSAT1, } \\ & \text { TSAT2 } \end{aligned}$	=	correlation time of satellite ranging measurement errors, min [input card 22]
TSUBK	$=$	times at which suboptimum filter gains are stores; min [input card 25]
TWOACC	$=$ $=$.TRUE. for 2-accelerometer case [input card 7] .FALSE. for 3-accelerometer case
VA	=	current airspeed, $\mathrm{ft} / \mathrm{min}$ [FLTPLN]
VCL	=	airspeed during climbout, ft/min [input card 3]
VCR	=	airspeed during cruise, $\mathrm{ft} / \mathrm{min}$ [FLTPLN]
$\mathrm{VE}(1), \mathrm{VN}(1)$	$=$	easterly and northerly groundspeed components out of $i^{\text {th }}$ waypoint, $\mathrm{ft} / \mathrm{min}$ [FLTPLN]
VELE, VELN	$=$	current east and north groundspeed components, $\mathrm{ft} / \mathrm{min}$ [FLTPLN]
VELW	=	current wind speed, $\mathrm{ft} / \mathrm{min}$ [FLTPLN]

Table 6. (Continued).
VFWD, $=$ forward and side components of groundspeed, $\mathrm{ft} / \mathrm{min}$ [DOPLR]
VSIDE
$\mathrm{VG}=$ current groundspeed, $\mathrm{ft} / \mathrm{min}$ [FLTPLN]
$\mathrm{VW}(\mathrm{I})=$ wind speed at $\mathrm{i}^{\text {th }}$ waypoint, $\mathrm{ft} / \mathrm{min}$ [input card 4]
$\mathrm{WX}, \mathrm{WY},=$ gyro torquing rates, $\mathrm{rad} / \mathrm{min}$ [INS]
WZ
$\mathrm{X}(400)$,
$\mathrm{Y}(400)^{\prime}=$ arrays for storage of data to be plotted [PLOTER]
$\mathrm{XK}(20,34,6)=$ suboptimum filter gain histories [UPDATE]
$\mathrm{XX}, \mathrm{XY}=\sigma^{\prime}$'s of along-track and cross-track position errors, nm [SUBOUT]
Table 7．Correspondence of Elements of Index Array KK to Row and Column of

		 志唯后品品雚品吕吉					等			
		 					¢			
		 					－			
	N ${ }^{\text {F }}$		๙ัํ ํ	®	음 ${ }^{\text {N}}$	응	－			
	$\bar{\sim}$ 9 0 9 0 9 0 9	 		$$						
	$\begin{array}{\|l\|l\|} \hline \Omega & a^{x} \\ \pm & a^{x} \\ \underline{m} & 0^{x} \\ \hline \end{array}$	 的								
$\begin{aligned} & \text { n } \\ & \text { 若 } \\ & \frac{0}{0} \\ & 0 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \underline{y} & x^{N} \\ = & x^{2} \\ 0 & x^{x} \end{array}$	 								
$\begin{aligned} & \text { 仓̀̀̀ } \\ & \text { n } \\ & \text { ñ } \end{aligned}$		 r								
			$\mid x^{x} k^{2} c^{N}$				－			

SECTION 6

HARDWARE REQUIREMENTS

Program NATNAV requires approximately $26,000_{10}\left(62,000_{8}\right)$ words of core to operate on the CDC 3800 computer (word length $=48$ bits). Although this is not an excessively large requirement, it could be reduced more than 30 percent by using program overlays. The core requirements, including library and system routines, are summarized in Table 8; the lengths of the NATNAV programs are those obtained with the * option (fast execution) of the CDC-3800 FORTRAN compiler (Ref. 2).

Other hardware requirements include standard system peripherals: card reader, line printer, up to three magnetic tapes (maximum) or disc, and a plotter. The logical unit assignments are summarized in Table 9. Normally, the disc file is used instead of assigning actual magnetic tapes.

Table 8. Program NATNAV Core Requirements.

Routine	Length (48-bit words)	
	OctalDecimal	
NATNAV	1,111	585
SUBIN	4,575	2,429
SUBOUT	707	455
CONFIG	663	435
EQNS	110	72
FLTPLN	656	430
EARTH	72	58
A	62	50
INS	703	451
ALIGN	61	49
DOPLR	256	174
OMEG	330	216
SATR	261	177
UPDATE	416	270
RKUTTA	4,627	2,455
DIFEQ	132	90
T	436	286
GQG	553	363
BLUNDR	24	20
PLOTER	3,216	1,678
	24,767	10,743
BLOCK COMMON	20,683	8,603
Library Routines	5,226	2,710
System Routines	7,105	3,653
Total	61,671	25,709

Table 9. Logical Unit Assignments.

Logical Unit	Corresponding FORRAN Vari- able or Logical Unit Number	Remarks
Card Reader	NN (60)	Standard card input; Logical Unit Number assigned in Data Statement in NATNAV.
Printer	MM (61)	Standard printout; Logical Unit Number assigned in Data Statement in NATNAV.
Magnetic Tape	NTAPE (49)	Read/write tape used if Plotting Option is chosen. Logical Unit Number assigned in Data Statement in NATNAV.
Magnetic Tape	7	Read/write tape used if printout of optimum gains option is desired.
Magnetic Tape	LTAPE (5)	Plot output tape Used if plotting option is chosen. Logical Unit Number assigned in Data Statement in PLOTER

SECTION 7

NATNAV INPUT DESCRIPTION

All NATNAV data input is accomplished via punched cards. The input variables, their units, and the required formats are presented in Table 10. Where appropriate, typical input values are also given. Some inputs may require more than one card, e.g. card 4. Other cards may or may not be required, depending upon the options selected by the user.

A sample data deck is shown in Table 11. This data is the nominal Boston to Shannon flight, with Omega updates every 15 minutes; the output of this run is presented in Section 8.

Table 10. NATNAV Input Structure.

TYPICAL

Card 1: Mandatory
$1-80$
TITLE $=$ Title of run
FORMAT

COLUMNS

,

| | Card 2: Mandatory
 $11-20$ | DT = maximum integration step size
 [min] | E10.1 |
| :--- | :--- | :--- | :---: | 1.0

QUANTITY

Card 2: Mandatory
$D T=\underset{[\mathrm{min}]}{\text { maximum integration step size }}$
E10.1

E10.I
5.0
5.0

Card 3: \quad Mandatory
1-2 NWPTS = number of waypoints $(\leq 20) \quad 12$

Table 10. (Continued).

COLUMNS	QUANTITY		FORMAT
	Card 4:	Mandatory $(1=1$, NWP	
	Card 4 in the fli up to 20 of NWP	eated for each waypoint plan, and may require s depending on the value	
1-10	LAT(1)	tude at waypoint I [deg]	E10.2
11-20	LON(1)	ngitude at waypoint I g]	E10.2
21-30	$V W(I)=$	direction at waypoint I	E10.2
$31-40$	THETAW	wind speed at waypoint I [kt]	E10.2

Card 5: Mandatory

$1-5$	GYROS $=1$ (TRUE)if using gyro drift uncer- tainty option	L5	1
6-20	ACCEL $=1$ (TRUE)if using accel- erometer uncer- tainty option	L5	L5
$11-15$	TORQ $=1$ (TRUE)if using gyro torquer error option	L5	1
16-20	GRAVD $=1$ (TRUE)if using geo- detic uncer- tainty option	L5	1

Table 10. (Continued).

Table 10. (Continued).

COLUMNS	QUANTITY	FORMAT	TYPICAL VALUE
	Card 7: Required if		
	DREKON = FALSE		
1	ISYS = 1.N.S. system type	11	6
11-20	$\text { TWOACC }= \begin{cases}1 \text { (TRUE) } & \text { for 2-accel- } \\ \text { erometer } \\ \text { case }\end{cases}$	L10	1
21-30	$\begin{aligned} \text { PHIDOT }= & \text { azimuth rotation rate } \\ & {[\mathrm{rpm}] \quad(\text { if } \mathrm{SYS}=5) } \end{aligned}$	E10.3	1.0
$31-40$	AKAP = inertial altitude weighting parameter (if TWOACC = FALSE)	E10.3	3.0
	Card 8: Mandatory		
1-10	$\begin{gathered} \text { EN } \varnothing=\text { initial platform tilt angle, } \\ \text { north [arc-min] } \end{gathered}$	E10.2	60.0
11-20	$\begin{aligned} E E \varnothing \varnothing & =\underset{\text { initial platform tilt angle, }}{\text { east }[\text { arc-min] }]} \end{aligned}$	E10.2	60.0
21-30	$E D \varnothing=\underset{\text { initial platform tilt angle, }}{\text { down [arc-min] }}$	E10.2	300.0
$31-40$	$\begin{aligned} \text { DLA } \varnothing= & \text { initial position error, } \\ & \text { latitude [arc-min] } \end{aligned}$	E10.2	0.2
41-50	$\begin{aligned} \text { DLO } & =\begin{array}{c} \text { initial position error, } \\ \text { longitude } \end{array} \text { [arc-min] } \end{aligned}$	E10.2	0.2
51-60	$\begin{aligned} & \mathrm{DH} \varnothing= \text { initial position error, } \\ & \text { altitude }[\mathrm{ff}] \end{aligned}$	E10.2	2.0

Table 10. (Cc-tinued).

COLUMNS	QUANTITY		FORMAT	TYPICAL VALUE
	Card 8:	(Cont.)		
61-70	$\text { RDLA } \emptyset=$	initial rate error, latitude [arc-min/min]	E10.2	0.0
$71-80$	$\begin{aligned} \text { RDLO } \varnothing= & \text { initial rate error, longitude } \\ & {[\text { arc }-\mathrm{min} / \mathrm{min}] } \end{aligned}$		E10.2	0.0
	Card 9:	Mandatory		
1-10	$\begin{aligned} & \text { RDH } \varnothing=\text { initial rate error, altitude } \\ & {[\mathrm{ft} / \mathrm{min}]} \end{aligned}$		E10.2	0.0
	Card 10:	Required if		
		GYROS = TRUE		
1-10	TGX $=$	Correlation times of correlated noise for gyro drift uncertainties in x, y and z direction [min]	E10.2	120.0
$\begin{aligned} & 11-20 \\ & 2.1-30 \end{aligned}$	$\left.\begin{array}{l} \mathrm{TGY}= \\ \mathrm{TGZ}= \end{array}\right\}$		E10.2	120.0
			E10.2	120.0
31-40	SGX $=1$	Standard deviation ofcorrelated noise in x,Yand z directionarc-min $/ \mathrm{hr}$]	E10.2	0.753
41-50	SGY $=$		E10.2	0.753
51-60	$S G Z=$		El0.2	4.630
$61-70$$71-80$	QWGX =	Strength of random noise for gyro drift un. certainties in x and y direction [arc-min ${ }^{2} / \mathrm{hr}$]	E10.2	3.24×10^{-4}
	QWGY $=$		E10.2	3.24×10^{-4}

Table 10. (Continued).
COLUMNS QUANTITY FORMAT VYPICAL VALUE

Card 11: Required if

$$
\text { GYROS }=\text { TRUE }
$$

1-10 QWGZ $=$ strength of random noise in

Card 12: Required if
ACCEL $=$ TRUE

1-10	TAX $=$	Correlation time of correlated noise of accelerometer uncertainties in x, y and z directions [min]	E10.2	40.0
11-20	TAY $=$		E10.2	40.0
21-30	$T A Z=$		E10.2	240.0
31-40	SAX $=$	Standard deviation of correlated noise of accelerometer uncertainies in x, y and z directions [g]	E10.2	1.0×10^{-4}
41-50	$S A Y=$		E10.2	1.0×10^{-4}
51-60	$S A Z=$		E10.2	9.2×10^{-4}
61-70	QWAX $=$	Strength of random noise of accelerometer uncertainties in x and y	E10.2	0.0
71-80	QWAY	direction $\left[\mathrm{ft}^{2} / \mathrm{sec}^{3}\right]$	E10.2	0.0

$\begin{array}{ll}\text { Card 13: } & \text { Required if } \\ & A C C E L=\text { TRUE }\end{array}$
$\begin{aligned} & 1-10 \quad \text { QWAZ }= \text { strength of random noise of } \\ & \text { accelerometer uncertainties }\end{aligned} \quad \mathrm{E} 10.2 \quad 0.0$

Table 10. (Continued).

COLUMNS	QUANTIT		FORMAT	TYPICAL VALUE
	Card 14:	Required if		
		TORQ = TRUE		
1-10	TAUX $=$	Standard deviation of	E10.4	0.05
11-20	TAUY $=$	torquer errors in x, y and z directions [\%]	E10.4	0.05
21-30	$\mathrm{TAUZ}=$		E10.4	0.05
	Card 15:	Required if		
		GRAVD $=$ TRUE		
1-10	SVX $=1$	Standard deviation of geodetic uncertainties in x, y and z directions [g]	E10.2	2.4×10^{-5}
11-20	$S V Y=\{$		E10.2	2.4×10^{-5}
21-30	$S V Z=1$		E10.2	2.4×10^{-5}
31-40	$D X=$		E10.2	20.0
41-50	DY =	detic uncertainties in x, y and z directions [g]	E10.2	20.0
51-60	$D Z=1$		E10. 2	20.0
	Card 16:	. Required if DTA $\neq \varnothing$		
1-10	SALIN1 $=$) Standard deviation of alignment random	E10.2	0.0222
11-20	SALIN2 $=$	\int errors [kt]	E10.2	0.0222

Table 10. (Continued).

Card 18: Required if
DOPLER $=$ TRUE

$1-10$	TDF $=\left\{\begin{array}{lll}\text { Correlation time of corre- } \\ \text { lated noise for forward and } \\ \text { sidewise velocity [min] }\end{array}\right.$	E10.3	E10.3

Table 10. (C=ntinued).

COLUMNS	QUANTITY		FORMAT	TYPICAL VALUE
1-10	Card 19:	Required if		
		DOPLER $=$ TRUE		
	DTDOP = interval between Doppler measurements [min]		E10.3	10.0
	Card 20:	Required if		
		OMEGA = TRUE		
1	$10 \mathrm{MI}=$	Indices of Omega stations for first line of position (L.O.P.)	11	2
6	$10 \mathrm{M} 2=$		11	4
11	$10 \mathrm{M3}=$	Indices of Omega stations for second L.O.P.	11	1
16	$10 \mathrm{M4} 4=$		11	4
21-30	TOMI $=$	Correlation times for correlated noise for first and second L.O.P. [min]	E10.3	30.0
$31-40$	TOM2 $=$		E10.3	30.0
41-50	SNOMI $=$	$\begin{aligned} & \text { Standard deviation } \\ & \text { of correlated noise for } \\ & \text { first and second L.O.P. } \\ & \text { [} \mu \mathrm{sec} \text {] } \end{aligned}$	E10.3	5.0
51-60	SNOM2 $=$		E10.3	10.0
61-70	$\begin{aligned} & S B O M 1= \\ & S B O M 2= \end{aligned}$	Standard deviation of bias errors for first and second L.O.P. [$\mu \mathrm{sec}$]	E10.3	1.0
71-80			E10.3	1.0

Table 10. (Continued).

COLUMNS	QUANTITY		FORMAT	TYPICAL VALUE
	Card 21:	Required if		
		OMEGA = TRUE		
1-10	SROMI $=$	Standard deviation of random errors for first	E10.3	0.5
11-20	SROM2 $=$	and second L.O.P. [$\mu \mathrm{sec}$]	E10.3	0.5
21-30	$\text { DTOM }=\text { in }$	erval between Omega asurements [min]	E10.3	15.0

Card 22: Required if
SATRNG = TRUE

1-10
11-20
21-30
31-40
41-50
$51-60$

61-70
71-80

DTOM = interval between Omega measurements [min]
$\operatorname{SATLON}(1)=\left\{\begin{array}{l}\text { Longitude of satel- } \\ \operatorname{SATLON}(2)=\end{array}\right.$ lites 1 and 2 [deg]

E10.2

- 10.0

E10.2

E10.2
10.0

E10.2
10.0

E10.2
0.2

E10.2
0.2

E10.2
0.1

E10.2
0.1

Table 10. (Continued).

	Card 23:	Required ifSATRNG = TRUE		
1-10	SRSATI $=$	Standard deviation of random errors for	E10.2	0.1
11-20	SRSAT2 $=$	satellites 1 and 2 [$\mu \mathrm{sec}$]	E10.2	0.1
21-30	DTSAT = interval between satellite ranging measurements [min]		E10.2	20.0

Card 24: Required if
SUBOPT $=$ TRUE
1-2 NK $=$ number of points in suboptima
filter history ($\mathrm{NK} \leq 20$)
11-20 TBLUND $=$ time at which e blunder/ E10.2
malfunction ocsurs [min]

Card 25: Required if
SUBOPT $=$ T?UE
1-80 $\operatorname{TSUBK}(1)=$ times correspording to
8E10.2 suboptimal gais points [min], $1=1, \mathrm{NK}$

12

Table 10. (Continued).

Cards 26-35 are repeated as a group NK times, once for each value of

TSUBK.

Cards 26-30: Required if
SUBOPT = TRUE and
DOPLER = TRUE
1-80
$1-80$

Cards 31-35: Required if

$$
\text { SUBOPT }=\text { TRUE and }
$$

DOPLER $=$ TRUE
$\operatorname{KSUBDS}(1, J)=$ Doppler side gains at
8 E10.2 $\operatorname{TSUBK}(1) ; \mathrm{J}=1,34$

Cards 36-45 are repeated as a group NK times, once for each value of TSUBK.

Cards 36-40:	Required if OMBOPT $=$ TRUE and

1-80 $\operatorname{KSUB} \varnothing 1(1, J)=$ Omega first L.O.P.
8 E10.2

$$
\text { at } \operatorname{TSUBK}(1) ; J=1,34
$$

```
都
```

$$
\begin{aligned}
\operatorname{KSUB} \varnothing(1, J)= & \text { Omega first L.O.P. } \\
& \text { gains at TSUBK }(1) ; \\
& J=1,34
\end{aligned}
$$

Table 10. (Continued).

| COLUMNS | QUANTITY | FORMAT |
| :--- | :--- | :--- | | TYPICAL |
| :---: |
| VALUE |

Cards 46-55 are repeated as a group NK times, once for each value of TSUBK.

$$
\begin{array}{ll}
\text { Cards 46-50: } & \begin{array}{l}
\text { Required if } \\
\text { SUBOPT }=\text { TRUE and }
\end{array} \\
& \text { SATRNG }=\text { TRUE }
\end{array}
$$

$$
1-80 \quad \operatorname{KSUBSI}(1, J)=\text { Satellite }{ }^{\# 1} 1 \text { gains at } \quad 8 \mathrm{E} 10.2
$$

Cards 51-55: Required if
SUBOPT = TRUE and
SATRNG $=$ TRUE
$1-80 \quad \operatorname{KSUBS} 2(1, J)=$ Satellite \#2 gains at $\quad 8 E 10.2$
Table 11. Input Data for NATNAV Sample Case.

SECTION 8

PROGRAM NATNAV OUTPUTS

Each page of the Program NATNAV printout begins with a heading line containing an identifying title, date, run number and page number. All input data for a run is repeated with descriptive identification. Figure 22 illustrates the printout formats for the sample run whose input data was presented in Table 11. Page one of the printout repeats the program control data and the flight plan; page two describes the INS errors; page three presents the Doppler, Omega and/or satellite ranging measurement errors.

The simulation results begin on page four. The printed output presents the nominal aircraft latitude (LAT), longitude (LON) and track angle (TRK) as functions of time. At each printout time, the standard deviation of the INS misalignment angles, and the position and velocity errors relative to the track are also shown:

EPSN,EPSE, EPSD North, East and Down platform misalignment angles.

Along- and cross-track position errors.
Vertical position error.
Along- and cross-track speed errors.
Vertical speed error.

In addition to the printouts at the specified interval, the program also prints at each waypoint and after each external measurement.

If the automatic plotting option is selected, the time histories of the position and velocity errors will be plotted with appropriate identification, as shown in
Figure 23. The error history data is temporarily stored on logical unit NTAPE (normally 49) during the run. This data could be saved for later analysis, e.g. collision
risk studies, by equipping this unit as a magnetic tape prior to execution. The information is recorded in binary format with odd parity; each logical record contains the following data (in order):

TIME
EN,EE,ED

DH

DX,DY

DHDOT
DXDOT,DYDOT

Simulation time (hours).
North, East, Down platform misalignment angles (deg).

Altitude error (ft).
Along- and cross-track position errors (nm) .

Altitude rate error ($\mathrm{ft} / \mathrm{min}$).
Along- and cross-track speed errors (kt).

If the update gain printout option is selected, the 34 optimum filter gains for each measurement will be printed at the completion of the run. The gains are temporarily recorded on logical unit 7, which could be saved for future analysis in the same manner as the plot data above. Each logical record contains the following data:

TIME	Simulation time (minutes).
MTYPE	Flag indicating type of measurement:
	$3,4=$ forward and sidewise Doppler measurements
	$5,6=1$ st and 2 nd Omega L.O.P. measurements
	$7,8=1$ st and 2 nd satellite ranging measurements
KOPT	34 optimum filter gains.

Figure 22. Printout for NATNAV Sample Case.

Figure 22. (Continued).

Figure 22. (Continued).

Figure 22. (Continued).

Figure 22. (Continued).
Figure 22. (Continued).

Figure 22. (Continued).

Figure 22. (Continued).

Figure 23. Plotted Output for NATNAV Sample Case.

Figure 23. (Continued).

SECTION 9
 PROGRAM OPERATION

Program NATNAV is run as any standard Fortran program; using either source or object code decks. The normal deck structure is depicted in Figure 24. The format of the input data deck has been presented in Section 7; the selection of the various options is summarized below.

9.1 PROGRAM OPTIONS

- OUTPUTS

If DTPLOT $=0$. , no plots will be generated; otherwise the standard deviations of the position and velocity errors will be plotted as functions of time in an alongtrack, cross-track and vertical coordinate system.

If DTOUT is input as a negative value, the optimum update gains calculated by the program for each measurement will be printed at the end of the run. The standard printout history will be generated using the absolute value of DTOUT.

- INS MODEL

The accuracy (and corresponding complexity) of the INS error model is specified by the following logical input parameters:

$$
\text { GYROS }= \begin{cases}1 \text { (TRUE) } & \begin{array}{l}
\text { Random and exponentially-correlated gyro } \\
\text { drift errors are included }
\end{array} \\
0 \text { (FALSE) } & \text { Gyro drift errors are neglected }\end{cases}
$$

Figure 24. Program NATNAV Deck Structure.

$$
\left.\begin{array}{l}
\text { ACC }= \begin{cases}1 \text { (TRUE) } & \begin{array}{l}
\text { Random and exponentially-correlated accelerometer } \\
\text { measurement uncertainties are included. } \\
0 \text { (FALSE) }
\end{array} \\
\text { Accelerometer measurement uncertainties are } \\
\text { neglected. }\end{cases} \\
\text { TORQ }= \begin{cases}1 \text { (TRUE) } & \text { Gyro torquer scale factor errors are included. } \\
0 \text { (FALSE) } & \text { Gyro torquer scale factor errors are neglected. }\end{cases} \\
\text { GRAVD }= \begin{cases}1 \text { (TRUE) } & \text { Exponentially-correlated geodetic uncertainties } \\
\text { are included. }\end{cases} \\
\text { ALTSF }= \begin{cases}1 \text { (TRULSE) } & \text { Geodetic uncertainties are neglected. }\end{cases} \\
0 \text { Random and scale factor errors in the altimeter } \\
\text { and vertical speed indicator are included. }
\end{array}\right] \text { (FALSE) } \begin{aligned}
& \text { Altimeter and vertical speed indicator errors } \\
& \text { are ignored. }
\end{aligned}
$$

The configuration of the INS being modeled is determined by the input values of ISYS and TWOACC. The type of inertial system is selected from the following options:

$$
\begin{aligned}
& \text { ISYS }= \begin{cases}1 & \text { Space stabilized } \\
2 & \text { Local level } \\
3 & \text { Free azimuth } \\
4 & \text { Strapdown } \\
5 & \text { Rotating azimuth } \\
6 & \text { Unipolar } \\
7 & \text { Wander azimuth }\end{cases} \\
& \text { TWOACC }= \begin{cases}1 \text { (TRUE) } & \text { 2-accelerometer INS } \\
0 \text { (FALSE) } & \text { 3-accelerometer INS }\end{cases}
\end{aligned}
$$

If $I S Y S=1$ or 4 , TWOACC will automatically be set to FALSE .

If DREKON = 1 (TRUE), the dead-reckoning navigation mode is simulated. In lieu of an INS, the pilot uses airspeed, gyroscopic heading information and predicted winds to estimate his groundspeed and position.

- NAVIGATION UPDATES

One or more types of external measurements can be selected for improving the navigation system position and velocity estimates:

$$
\begin{aligned}
& \text { DOPLER }= \begin{cases}1 \text { (TRUE) } & \text { Doppler radar measurements are included. } \\
0 \text { (FALSE) } & \text { No Doppler radar measurements. }\end{cases} \\
& \text { OMEGA }= \begin{cases}1 \text { (TRUE) } & \text { Two Omega line-of-position measurements } \\
0 \text { (FALSE) } & \text { No Omega measurements. }\end{cases} \\
& \text { SATRNG }= \begin{cases}1 \text { (TRUE) } & \text { Two satellite-ranging measurements are included. } \\
0 \text { (FALSE) } & \text { No satellite-ranging measurements. }\end{cases} \\
& \text { - SUBOPTIMUM FILTERING }
\end{aligned}
$$

If SUBOPT = 1 (TRUE), a set of input filter gain histories is used to update the position and velocity estimates; otherwise the optimum gains calculated by NATNAV are used to incorporate the measurement information. The input filter gains are assumed to be piecewise linear functions of time.

- BLUNDER/MALFUNCTION OPTION

The effects of a specified blunder or malfunction can be examined by using
the Suboptimum Filtering Option. If SUBOPT $=1$ (TRUE) and TBLUND >0., the optimum filtering gains are used until time = TBLUND. Appropriate changes in the error estimates, system noises, measurement accuracies, etc. are made (via the usersupplied subroutine BLUNDR) at time $=$ TBLUND; the simulation then continues using the input gain histories. These will have been generated by a previous NATNAV run without the blunder/malfunction (using the optimum gain printout option).

9.2 EXECUTION TIME

The execution time of the simulation will vary considerably depending upon the length of the simulated flight, the integration step size, the number of errors included, the types and frequency of the measurements being made, and the output options selected. To provide an indication of the running time, the sample case presented in Section VIII required 4.1 minutes to simulate a five hour flight, plot the results and print the optimum filter gains. This is about a 75 to 1 ratio of simulation time to execution time. For comparison, the CDC-6600 version of the program requires less than 20 percent as much time for execution.

9.3 DIAGNOSTICS

Program NATNAV has been made as self-sufficient as possible. No diagnostics will be produced other than the standard CDC-3800 execution error messages.

SECTION 10

PROGRAM RESTRICTIONS AND MODIFICATIONS

In developing Program NATNAV it was endeavored to achieve a reasonable compromise among conflicting factors, such as simulation realism, program simplicity, flexibility, ease of operation, and computer requirements. However, as experience with the program is gained, as objectives shift, and as new applications emerge, various modifications to NATNAV will undoubredly be required. Several possible restrictions and potential modifications are discussed below.

- BLUNDER/MALFUNCTION STUDIES

As mentioned earlier, the analysis of most specific blunder or malfunction situations will require modification of Subroutine BLUNDR. The example implemented in the existing BLUNDR is a sudden 24 nm lane shift in the first Omega line-ofposition measurement. Other situations would be simulated by replacing cards NAT20700 through NAT20740 (see Program Listing) with the appropriate statements. For example, a gradual doubling in the correlated drift rate of the INS azimuth gyro would be simulated by inserting the following statement:

$$
\text { QVGZ }=4.0 * Q V G Z
$$

NAT20700

- SUBOPTIMUM GAINS

The present version of NATNAV permits the user to input a set of suboptimum filter gains, which are defined at up to twenty instants of time. To model filter gain histories in greater detail, the user could increase the dimensions of the variables TSUBK, KSUBDF, KSUBDS, KSUBø1, KSUBø2, KSUBS1, and KSUBS2 in Common

Block BSUBOP. Those programs requiring these changes can then be determined by reference to Table 4. In addition, the first dimension of XK in Subroutine UPDATE would also need to be increased appropriately.

- PLOTTING EXTENSIONS

Subroutine PLOTER is presently dimensioned to plot up to 400 data points in each error history, which should be sufficient for most North Atlantic simulations. However, to plot a simulated five-hour flight with updates every minute $\left(600^{+}\right.$ data points) the dimensions of X and Y in PLOTER would have to be increased (Card NAT20900). Also, the limit size on card NAT21350 would require a corresponding change.

In addition to the position and velocity error histories, PLOTER will plot the INS platform misalignment angles by merely changing the upper range of the DO loop beginning at card NAT21360 from 6 to 9.

Additional quantities can be plotted with somewhat more effort. First, the appropriate data must be saved by appending it to the WRITE statement on card NAT6590 in subroutine SUBOUT. In PLOTER, the dimension of DUM (card NAT20900) and the upper range of the DO loop (card NAT21420) must also be increased. Other additions would be required in PLOTER as appropriate to define the size and labelling of the new plots.

- FLIGHT PLAN ALTERNATIVES

Program NATNAV accepts flight plans consisting of position and wind data at a series of up to 20 waypoints. To accommodate additional waypoints, the dimensions of all arrays in Common Block BFLTPN could be increased appropriately.

Fo!lowing normal operational procedures, the nominal route between pairs of wapoints maintains a constant track over the earth's surface. Great circle routes can be approximated by selecting appropriate waypoints along the precalculated great circle path. Alternatively, subroutine FLTPLN could be altered to calculate the actual great circle route between waypoints. (See References 5 and 6 for available great circle route subroutines.) A constant, average wind is used for groundspeed and heading calculations between waypoints. Although this is quite reasonable considering the accuracy of winds aloft forecasts, the nominal wind data could be generalized in space and time at the cost of added input complexity and additional calculations in Subroutine FLTPLN. The cruise altitude, now assumed constant, could be made variable by specifying a desired altitude at each waypoint, and beginning a climb as necessary to reach the new altitude at the waypoint.

The aircraft characteristics are defined simply in terms of constant climb speed, rate of climb, and cruise Mach number. No dynamics or attitude motions are included since they occur so rapidly relative to the time frame of interest in most navigation analyses. However, in certain cases, e.g. a detailed simulation of a strapdown I.N.S., a more accurate representation of the aircraft/pilot response characteristics might be necessary. For those situations, more realistic error models, such as those in Reference 7, could be included in Subroutine FLTPLN.

- ERROR MODELS

Detailed descriptions of the error models implemented in NATNAV are presented in Volume 1 (Ref. 1). However, the modular design of the program will permit the analysis of alternate or additional error models without great difficulty. For example, the simulation of an I.N.S. updated with VOR/DME information
could be achieved either by replacing an existing system, such as satellite ranging, or by adding the VOR/DME model to the existing ones. Since the VOR/DME errors can be modelled as two biases and two exponentially-correlated noises (Ref. 7), this model could be easily implemented by replacing the calculations in Subroutine SATR with those for the VOR/DME errors. The location of the VOR/DME stations could be input via the arrays SATLAT, SATLON and HSAT in Common Block BSATR, and the logical variable SATRNG would be used to indicate VOR/DME measurements. To prevent confusion, the printouts referring to satellite-ranging measurements in SUBIN and SUBOUT should also be changed.

To add VOR/DME measurements, or others, to the existing program, a logical variable would be added to Common Block BLOGIC to indicate these measurements, and another common block would be inserted to transfer all pertinent data. SUBIN would be modified to read the appropriate inputs. A new subroutine would be required to calculate the optimum filter gains for the VOR/DME measurements. NATNAV would test the new logical variable, and call this subroutine to update the covariance matrix if necessary. The dimensions of the covariance matrix in Common Block BCOVAR, and the arrays in Common Blocks BINDEX and BINTEG would be increased to accommodate the additional error state variables. The data statements in Subroutine EQNS for the index arrays II and JJ would be changed, and appropriate additions would be required in Subroutine CONFIG to set up the differential equations for the covariance matrix. Functions T and GQG would need simple additions to calculate the new derivatives, and minor changes would be necessary elsewhere in the program to accommodate the increased dimension of the covariance matrix.

- TIME-SHARING VERSION

A time-sharing version of NATNAV would involve primarily modification of the input/output portions of the program. Most input data would presumably be kept on a separate file rather than being fyped in for each run. Subroutine PLOTER might be run as a separate program to generate off-line plots. A number of other efficiencies could be made in a time-sharing version to minimize core-storage, execution time and remote terminal connect time. For example, it might be specialized to simulate only local-level type INS's, thereby eliminating four error state variables; or the secondary I.N.S. component errors (gyro torquer scale factor errors and geodetic uncertainties) might be deleted, to save six state variables; or the 4 th-order Runge-Kutta integration routine might be replaced by a faster, but less accurate technique. All such changes would depend upon the applications anticipated for the time-sharing version.

SECTION 11

PROGRAM LISTING

The following pages present a complete FORTRAN IV listing of the NATNAV simulation program for the Naval Research Laboratory's CDC 3800 computer facility. For the user's convenience, a Table of Contents for this listing is given below:

Program	Page
	102
SUBIN	106
SUBOUT	112
CONFIG	114
EQNS	117
FLTPLN	118
A	122
EARTH	123
INS	124
ALIGN	129
DOPLR	130
OMEG	132
SATR	134
UPDATE	136
RKUTTA	138
DIFEQ	139
T	140
GQG	142
BLUNDR	145
PLOTER	146


```
1% GHSATV1, GHSAT U2,)
        CATA (NN=60), (MM=61), (NTAPE=49)
    ME!-OT=0
    CALL JATFIMO,IDAY,IYEAR,JDAY)
C
O READ INPIIT DATA
    10 SU!T=,FALSE,
    CALL SUGIN(QUIT)
    CALL SUGIN(QUIT)
\ IAITIALIZATIGA
    If (PGAINS.GT.0.0) REWIND 7
NPLOT=O
NPLOT=O
    MHLOT=MPLOT+1
    NP-OT=1
    25 TCJT=0.
L\VE=51
        L!VE=51
    IWPTSEI
```



```
:.}\begin{array}{lll}{C0}&{30}&{l=1,34}\\{D0}&{30}&{J=1,34}
    3\cap P(!,J)=0.0
\Gamma
G IAITIAL CONDITIONS
        TIME=0.
        IMIT=,TRUE,
        CALLLFLTPLN (TIME)
        TFETM(NWPTS)
    TDOP=TOMEOETSAT =1,0E10
        1F (TBLUND.LE.0.0) TBLUND=1.0E10
        CALL INS
        CALL ALIGN
        IF (.NOY,DOPLER) GO TO 34
        TDOP=TM(I)+DTDEP
    CALL DOPLR
    I4 IF (,NOT,OMEGA) OS TE 36
    TOMEG=TM(1)*DTOM
    CALL GMEG
    \6 IF (.NOT.SATRNG) GO FO 38
    TSAT=TM(1)*DTSAT
        CALL SATR
    78 INIT=,FALSE,
    CALL CONFIG
        CPTIMEETIMEF(DUMY)
        WRITE{MM.40) CPTIME
        40 FORMAT (//5X,*IC.P. TIME =#,E14,6,*)#|
            CALL SUBOUT(O)
            TOUT=YOUT+DPOUT
C
100 T1&TIME+DY1
INTEGRATE COVARIANEE MATRIX
    DT=AM\NI(T1,TOUT,TF,TDAP, TOMEG,TSAT,TM(IWPPS), TBLUNDI-TIME
NAT E゙Tg
VAT 59%
    *AT 590
    VAT AOO
    VA* 人凉
    VA? 人टC
    MAT STS
    NAT GA%
C
NAT <50
NAT S60
UAY K70
    NAT GP?
NAO
N&= 5!5
4: -i, 
4:% -i, 
M4* 72J
\becauseA 7.jo
NAT 7SO
NA" 750
O Marsa
NAF 7EU
VAT 770
NAT 7RO
NAT 790
C
NATY BAS
NAY
NAT R20
NAT RJO
    NAT RAO
    NAT RAO
    NAT 850
NAT 870
NAT AgO
NAT 890 
NAY
NAT 910
NAT
NAT 930
    NAT 940
    NAT 950
    TOMEGETM(1)+DTOM TV 36
NAT 950
NAT 960
NAT 070
NA%
    NA
    NAT 1000
    NATY 1010
    NA 1010
    NAY 1020
    NAO 1030
    NAÝ 1040
    NAT 1050
NAY 1060
NAY 1070
NAT 1070
NAY 1090
NAY 1090
NATY 1110
NAT 1120
```



```
~
    BLUNDFR/MALFUNCTION CASE
        WRTTE (MM,310)
    (4) 1490
    IC? CALL SUBOUT (-1) NA+ :7OO
    NAT 1710
    IIN FUQMAT (1HO,5X,3H***,*RLUNDER/4ALFUNCTION AT THIS FIME*,JH***) NAT 17?J
        L:VE=LINE+1
        call alvuiva
        TULUND=1.OE10
        SUROPT =, TRUE.
        MEAS=0
        QG TO 250
r. END CF RUN
    8CO IF (NPLOT,EO.O) GO TO 82O
        NFLOT=NPLQT-1
        REN!ND NTAPE
        CALL PLOTEQ (MPLOT)
        WHITE (MM,810)
    E1? FORMAT (INO,5X,19HTHIS RUN IS PLOTTED/)
    8<0 IF (PGAINS.EO,O.0) OOTO 850
#
                            PRINT OUT AND PUNEH OPTIMUM UPDATE GAINS
        ENDFILE 7
        REWIND }
        CALL SUBOUT(-2)
        WRITE(MM,500)
    EOO FGRMAT(1HO,5OX,4H**由 , OOPTIMUM UPDATE GAINS FOR PHIS RUN*,4H %##,
        1 /I
        WRITE (62,505) NRUN
    EO5 FORMAY (*OPTIMUM UPDATE GAINS FOR RUN NO.*,14)
        J=1
        L!NE=3
    E10 READ(7) T,MTYPE,(KOPP(1),I#1,34)
    lF (EOF,7) 550:520 NAT 2OCO
520 IF (LINE,GE,54) CALL SUBOUY(-2)
        N=MYYPE-2
    WRITE(MM,530) T,XTYPE(N),(KOPT(I),1=1,34)
530 FORMAT (9H0*** T=,F7.3.1X,AB,4H***,7E14.6)
        1 (1X,9E14,6))
            TSUBK(J)=T
        J=J+1
        WRITE (62,540) (K@PT(I),I=1,34)
    540 FORMAT (BE10.3)
    940 FORMAT (8E10.3)
        G0 TO 510
    550 WR!TE (62,560) (T5UBK(1),I■1,N)
    EOO FGRMAT (*TSUBK ARRAY*/(8EIO,3))
C
8:O CPTIHESTIMEF(DUMY)
    WRITE (MM,4O) CPYIME
        GO TO &O
C END OF JOB
    9OO IF (MPLOT,GY,O) CALL PLOTER(-1)
        STOP
        END
    N:A+ i%?0
    vAY 1740
    NAT :750
    VAT :750
    N6T 1750
    NAT 1770
    NAT 17RD
    NAT 1770
    NAT 17%C
    MAO 1AOS
    NAT 1R:0
    Mi# % 1.2%
    NAT 1RJ0
    NAT 1A40
    NAG 15F%
    NAY 1RAO
    NAT 1870
    NAT 1AR0
    NAT 1RCJ
    NA* 19C0
    NAT 1910
    N4T 1020
    NAT 1030
    NAT 1030
    NAT 1940
    NAT 1850
    NAT 1060
    NAT 1975
    NAT 19RO
    NAT 1990
```



```
    NAT 2010
    NAT 2020
    NAT 2030
NAT 2040
NAT 2050
NAT 2060
NAY 2070
NAY 20RO
    NAY 2090
    NAY 2090
NAT 2100
NAT 2110
NAT 2120
NAT 2130
NAT 2140
NAY 2150
NAT 2160
NAT 2170
NATY 2180
NAT 2190
NAT 2200
NAT }221
```



```
    THIS SUGROUTINE READS AND DRINTS INPHT DATA, NAT İ%,
```



```
    CEUMEN/BALT,TAUH,SALT,TAUHD,SALYT
    CEMMON /AEGPLR! TEF,TDS,SNDF,SAIDS, SEDF,SBES, SZOF,SROS,
    1 DTJGD,GIF, IDS, RDF, RDS
    C؛MUON /GCRKN/SVWN,SVWE,DVAN,DVWE
    CこMMON / BFLTPN/DTA,ETT,HO, VCL,RC,MCA,HCR,NWPYS, LATGTOI,
    1 LCN(20), THETAW(20), VW(20), TCR, YM(2N), VN(2C),
    l
    CGMMON/ EINSI/ISYS,FEN, ENO,EDD,DLAC,NLOO,RELAO,RNLMO,DHO,
                            ANHO,AKAP, PHIDET, OMS2,FN,FE, FE
    CCMMEN/GINS2/YGX,TGY,TGZ,OWGX,QWGY,QWGZ,SGX,SGY,SAZ',
    l GVGX,QVGY,OVGZ,TAX,TAY,TAZ,QWAX,OWAY,QWAZ,
    l GVGX,QVGY,OVGZ,TAX,TAY,TAZ,QWAX,OWAY,QWAZ,
    3 LX,EY,DZ,SVX,SVY,SVZ,QVX,QUY,QVZ,QWH \AT 2300
    COMMलN/E\NTEG/ 5(585),SD(585), JT,DTO5,NEC
    CEMMAN/BLEGIC/ GYROS,ACCEL,TORQ,ALTSF,GRAVDIINSO,TNOACC,
    1 DOPLER,GMEGA,SATRNG,SUBOPT,DREKON
    COMMON/ELU/NN,MM NAT EASO
    COMMON/BOMEGA/ ICM1, IOM2, IOMS, IOM4, TOM1; TOM2, SNOM1, SNOM2, NAT 244g
    1 SOON1,SQOM2, SROM1,SROM2,DTOM,OMM1,OOM2,
    2 ROM1,ROM2
    COMMON /BPLOT/ DFPLOT,NPLGT,NTAPE
    COMMON /BSATR/ SATLAT(?),SATLON(2),HSAT(2),TSAT1,TSAT2,
    1 SNSAT1,SNSAT2,SBSAT1,SBSAT2,SRSAT1,SASAT2,
                    DTSAT,OSAT1,OSAT2,RSAT1,RSAT2
    COMMON /BSUBOP/NK,TSUBK(20),KSUEDF(20.34), KSUADS(20;34):
    1 KSU日O1(2n,34), KSUPO2(20,34), KSU日S1(20,34),
    2 KSUBS2(2n,34),PGAINS,TRLUND
    COMMON /BTITLE/TITLE(1O), NRUN, NPAGE,DTOUT, LINE,MO;IMAY,IYEAA
    LOGICAL TWOACC,GYAOS,ACCEL,TORQ,BRAVD,ALTSF,INSG,QUIT,SUGOPT
    LEGICAL DOPLER,GMEGA,SATRNG,DREKON
    CIMENSION TOS(2,7):STAT(2,8)
    REAL MCR,LAT,LON,KSUBDF,KSU日OS,KSURO1,KSUEO2,KSURSI,KSUBSZ
C
C
    CATA ISTATEGHNORWAY,IH, BHTRINIDAD,IH,GHHAWAII,IH, OHN DAKOTA,
    I 1H, BHREUNION,1H, QHARGENTIN,IHA,BHN TASMAN, 2HIA,SHJAPAN,
    2 1H J
    DATA ITOSISHSPACE ST, QHABILIZED,GHLOCAL LE,ZHVEL,8HFREE AZI:
```



```
    2 BHWANDER A,GHZIMUTH)
    CATA (NORTH=2H N), (SOUTH=2H S), (EASTM2H E), (WEST#2HW)
C
READ (NN.11) TITLE
11 FGRMAT (10AB)
    IF (EOF,NN) 1,2
    1 OUIT=,TRUE.
    2 RETURN
    2 RETUGNEI
    NRUN=NRUN*1
    READ {NN,5) DT,DTQUT,DTPLOT,NRUN
    NAT,F%こ
    NAT iz% - 
    "AT E205
    NG: 2%70
    N&: 2F7%
    \becauseAT 2%a?
    .4: 270%
    vAT 2300
    CIMMGN/ BFLTPN/DTA, ETT,HO, VCL,RC,MCR,HCR,NWPYS, LATFPOI, NAT 23:C
    NAT 232C
    NAT 2340
    O-5
    NAT 2?AO
    NAT 2TAO
    *AT 2300
    NAT 2&CO
    NA: 
    NAY r<t 0
    NAT 2420
NAT 244g
NAT 2450
~
~
~
    NAT ?.3? 
    N4: 23.340
    NAT ?:Rg
    NA+
NAT ?4<0
NAT :470
NAT 24AO
NAT ?.490
NAT 2500
NAT 2500
NAT 2510
NAT 2520
NAT 253.
NAT 253,
NAT 2550
NAT 2560
NAT 2560
NAT 2580
NAT 2580
NAT 2600
NAT 2500
NAT 2020
NAY 2630
NAY 2640
NAF 2650
NAT 2660
NAT 2670
NAT 2680
NAT 2690
NAT 2700
11
    NAT 2710
    NAT 27100
    NATT 2730
    NAT NAT50
    NAT 2740
NAT 2750
NAF゙ 2760
NAT 2770
```

```
    \Xi FéquAF(17X,3E10, &, (2) NAT E=R=
?
    FGAINS=0.0
    [F (DPOUT,GT.0.0; G0 Tm 1000
    ごこいな=-0T@UT
    PGAJNS=1.0
    100П CALL SU日OUT(-2)
    WRITE (MM,1005)
    1CO5 FORMAT (1WO.61X, HNAYNAV INPUTS*/ 40X,55(1H-))
    WT!TE (MM,101J) OT,DYOUT
    ICIg FGRMAT (IHO.44X, INTEGRATION SFEP-SIZE= =,F6,2.6X,GMINUTFS*/I
```



```
            If (DYPLFI,NE,O,) WR!TE (MM,1015) DTOUT
    IF (DTPLOT,EP.D,) WRITE (MM,1020)
    1E15 FERMAT (1H,45X, &PLOY MUTPUT INTERVAL E *,FA.2.6X,GMINUPES*///)
    1C29 FORMAT (1H,64X,*NC DLOT*///)
C
    READ {NN,10} NWPTS,DYA,DTT,HO,VCL,PC,MCR,HCR
        1^ FCRMAT (12, Bx,7E10.2)
            READ (NN,20) (LAT(I),LON(I),VW(I),THETAW(I),I=1,NWPTS)
        20 FORHAT (4E10.2)
            WRITE (MM,1025)
1C25 FORMAT (1H0,59X, FFLIGHT PLAN DATA*/ 58X,10(2H*))
            WRITE (MM,1030)DPA,DTT,HO,VCL,RC,MCR,HCR
IE3: FORMAT (1HD,46X,GINS ALIGNMENT TIME =*,F8,2,4X,GMINUTES*//47X,
                - YAXI TIME*, 13X, 日*,F8,2,4X,*MINUPES*//47X,
                *A!RPORT ELEVATION*,5x, == %,F8,0.4x, #FEEP*//47x,
                    *A/C CLIMB SPEFD*,7X, 目*,F月,0,4X,*MNOTS*//47X,
                        *4/C RATE OF CLIME*,5x,*#,FB.0,4x,由FT/M/N由//47x,
                        CCRUISE MACH NUMBER&,4X, (AO,FB,3//47X, =CRUISE ALTITUDE*,
                        7x,*玉*,FO,0,4x,由FEET*//
                        /GIX, 由RNUTE OF FLIGHY *//20X, #WAYPOINT *,I4X, DLATITUDE由,
                        14X, LLENGIPUDEW,14X,GWIND DIRECTION*,14X,GWINR SPEED*/
                            44x,*(DEG)*,18X,*(DEG)*,21X,由(DEG)&,2nX,*(KPS)*//)
            DC 100 l=1,NWPTS
            XLATEABS(LAT(J))
            XLON=ABS(LCN(I))
            NORS=NORTH
            EORW = WEST
            IF (LAT(I).LT.O.O) NORS=SOUTH
            IF (LON(1),GT,O,0) EORW=EAST
    100 WRITE (MM,105) I,XLAT,NORS,XLON,EORW, THETAW(I),VW(I)
    105 FORMAT (23X,12,18X,F7,2,42,14X,F7,2, 12,2(20X,55,1))
            CALL SUBEUP(-2)
C
            READ (NN,35) GYROS,ACCEL,TORO,GRAYD,ALTSF,SUBOPT,DOPLER,
            & OMEGA,SATRNG,DREKON
    35 FOAMAT (10L5)
            IF (.NOT,DREKON) GO FO 1034
C
            READ (NN,IO31) SVWN,SVWE,DVWN,DVWE
1031 FORMAT (4E10,3)
    WRITE (MM,1032) DVWN,DVWE,SVWN,SVWE
1C32 FORMAT (1H0,50X, EEAD-RECKONING GPTION由/50X,12(2H= 1/13X.
    I WIND STATISTICS由,32X, OERREGITION IISTANCES (NNIO, I7X,
    2 *NORTH=*,6X,F7,2/96X, #EAST = . 7X,F7.2/150X.
    NAT 2;=0
    NAT 2;=0
    VAT 2RCS
    NAT ??:S
    N4T ? ダ!=
    MAT 2A30
    NAT 2840
    NAT 2850
    NAT 28E0
    NAT 2&70
    NAT 2890
    NAT 2Avu
    NAT ?ORE
    NAT 2010
    NAT 292J
    NAT 292j
    NAT 2%35
    NAT 2040
    NAT 2040
    NAT 2050
    NAT 2070
    NAT 20&J
    NAT
    NAY 3000
    NA* 3010
    NAT 3020
    NAT 3O30
    NAT
    NA% % 3050
    NAF 3060
    NAT 3070
    NAG 3070
    NAF 30EO
    NAT 30%O
    NAT 3100
    NAT 3110
    NAT 3120
    NAT 3120
    NAT 3:40
    NAT 3150
    NAT 3150
    NAT 3160
    NAT 3970
    NAT 3980
    NAF 3190
    NAF 3190
    NAT 3200
    NAY 3210
    NAT 3220
    NAT 3230
    NAT 3240
    NAT 3250
    NAप̄ 3280
    NAT}327
    NAT 3270
    NAT
NAY 33CO
NAT 33CO
NAT 3320
NA% 3330
```

```
        3 STANDARE DEVIAT:ENS (KY)w,20X,由NARTH-#,EX,F7,7/95X. NAT 又?40
    4 EAST - , 7X,F7,2/1) NAT 3?50
    ACCEL=,FALSE
    ЈनAVD=,FALSE.
    11.53=,FALSE.
    THOAこ心=,TRUE.
    ISYS=2
    GC TM 1047
    1034 WPITE (MM,1035)
    1N35 FORMAT (1H0,61X,由|.N.S: DATA*/61X.7!2H- ))
r
    READ {NN,25} ISYS,TWOACC,PH\DOF,AKAP
    <5 FERMAT (11,9X,L10,2E10.3)
    IF (ISYS.EQ,1.OR.ISYS,EO.4) TWMACCa,FALSE,
    IF (TW\capACC) N=?
    IF (.NOT,TWOACC) NES
    IF (TWOACC) INS9=,FALSE,
    IF (.NOT,TWOACC) INSO=.TRUE,
    IF (INS9) Me9
    IF (,NOT,INS9) ME7
    WRITE (MM,1040)N,ISYS,(TGS(1,I5YS),lE1,2), M
    1C4! FORMAT (1HO,15X,I2,由r ACCELEROMETER CASE*:13X, #TYPE#',\2,
                由SYSTEM*,7X,2AB, BX,I2,* STAYE VARIARLE I.N,S.*,
                    -MODEL#)
    IF (ISYS.NE,5) GO TO 1047
    WR\TE {MM,1045) PHIDOT
    1C49 FGRMAT (1H,4SX, #AZIMUPH ROTATYON RATE =, FB,3,* RAD/SEC*)
C
1O47 READ(NN,3O) ENO,EEO,EDO,DLAO,DLOO,DHO,RDLAO,RDLOO,RDHO
    \O FGRMAT (BE10,2)
    WRITE (MM,105O)ENO,EEO,EDO,DLAO,DLOO,DHO,ROLAO,RDLDO,ROHO
1G50 FORMAT (1MO,3X, INITIAL CONDITIONS*,29X,*PLATFERM YILT ANGLES由,
```



```
                    由EAST - 由, 6X,F7.2, (ARC-MIN)=/96X, #DOWN - #,6X,F7.2,
                    * (ARC-MIN)&//51X,由POSITION ERRORS*,3OX,*LAT!YUDE - *,2X,
                    F7,2,由 (ARC-MIN)*/96X, LGNGIFUDE *,F7.2* (ARC-MIN)*,/
```



```
            7 F7,2,* (ARC-MIN/MIN)由/96X,*ALFITUDE - 由,F7.2,* (FEEP/M!N)由//INAT 3720
            IF (GYROS,OR,ACCEL,OR,TORO,GR,GRAVD,OR,ALTSF) WRITF. (MM,1055) NAF 3730
    1055 FGRMAY (1H,97X,由X*,12X,由Y*,12X,由Z*)
C
    IF (.NOT.GYROS) GO PO 1065
C
    READ (NN,4O) TGX,TGY,TGZ,SGX,SOY,SGZ,QWGX,GWGY,QWGZ
    4O FORMAT (BE10.2)
    WRITE (MM,1O&O)TGX,TGY,TGZ,SGX,SGY,SGZ,QWGX,QWGY,OWGZ NAG 3BOO
    790
1CGO FORMAT (IHO, JX,GGYRG DRIFT UNCERTAINTIES*,IIX, #CORRELAFIGN TIMES*,NAT 3SIO
    1 OF CORRELATED NOISE {M|N}, 6X,3FI3,2/J9X, NAF 3820
    & S,D. OF CORRELATED NGISE (ARC=M|N)#,15x,3F13,3/30x, NA#̄ 3830
    #STRENGYN GF RANDOM NEISES (ARC-MIN2/HR)电,14X,3EIS,4)
1065 IF (,NOT.ACCEL) GE FO 1075
    45. FORMAT (8E10,2)
    NAT 3850
    NAT 3860
    READ (NN,45) TAX,TAY,TAZ,SAX,SAY,SAZ, OWAX,OWAY,OWAZ
C
    WRITE (MM,1070JTAX,TAY,TAZ,SAX,SAY,SAZ,OWAX,OWAY,QWAZ
N4T}388
NAT 3&90
```



```
        | *TMES OF CORRELATED NOISE (MINI*,12X,2P57.2,RXI,57.21 OX.
        *UNCERTAINTIES*,I7X,*S.D, OF CORRELITFE NFISE (A)*,?5x.
            3E13.4 / 3OX, STRENGTH OF RANECM NAISE (FTS/SECJIO,
    A 18x,3E{3,4)
    ic/F if l.NOT,TORC; GE TG dOS5
        READ (NN,50) TAUX,TAUY,TAUZ
    EO FGRMAT (3E10.4)
    WNITE (MM,1080)TAUX, yAUY,TAUZ
```



```
    1 *CENT)*,27X,2(57,4,6x),57,4/0X, FFACTOR ERRORS.!
```



```
c
    READ (NN,55) SVX,SVY,SVZ,DX,DY,DZ
    5% FORMAT (6E10.2)
    WFITE (MM,1090)SVX,SVY,SVZ,DX,DY,DZ
    ICGO FERMAT (1HO, 3X, GEODETIC UNGERGAINTIES*,13X,
            *STANDARD DEVIATIQN (G)*,3&x,3E13;4/39Y.
            *Corfelarion distantes (NM)*,28x.
                        2(58,2,5x),F8.?)
C
    1100 [F (DTA,EG,O,O,OR,DREKAN) GO TO 1200
!
    READ (NN,65) SALIN1,SALIN2
    G5 FORMAT (2E10.2)
    HR!TE (MM,1217)SALINI,SALIN2
    1217 FGRMAT(1HO,3X, #ALIGNMENT RANDOM ERROR5*,12X,*STANDARD.,
    1 DEVIATION (KNOTS):,23x,2F13,4)
    1200 [F (.NET.ALTSF) GO TO 1210
C
    READ {NN,60) TAUM,SALT,TAUHD,SALTD
    EO FORMAT (4EIO,2)
    WRITE PMM,1205ITAUH,5ALT,TAUHD,SALYD
    1205 FORMAT (1HO, 3X,*ALTGMEPER SCALE FAETOR ERROR*,7X,*STANDARD *,
    1 DEVIATION **FT,3.* PERCENT*/ 4X, AALTIMETER RANDOM ERROR*,
        13X, #STANDARD DEVIATION -*,F7.3,* FT*/%
        4x,*V.S.!. SCALE PACTOR ERROR\bullet,10X;MSTANDARD..
        *DEVIATION -*,F7,3,* PERCENF*/4X,*V.S.I, RANDOM ERROR*,
        16x.*STANDARD DEVIATION =*,F7.J.* FY/MIN*)
C
    1210 !F (INS9) WRITE (MM,1215) AKAP
    1215 FGRMAT (1MO,3X,GINERTIAL ALTITUDE WEIGHTING FAETMR - ©,F8,3)
C
    IF (DOPLER,OR,OMEGA,ORISATRNG) 121B,2260
    1218 CALL SUBOUT(-2)
    IF (.NOT.DQPLER) GO TO 1230
    WRITE (MM,1220)
    1220 FORMAT (1H0,55X,*DOPPLER MEASUREMENT DATA*/55X,14(2Hm )//72X,
    1 FORWAPD*,18X,*SIDEWISE*)
C
    READ (NN,70) TDF,TDS,SNDF,SNDS,SGDF,SGDS,SRDF,SRDS,DYDOP
    7 0
    FORMAT (8E10.3)
    WRITE (MM,1225) TCF,TDS,SNDF,SNDS,SBDF,SEDS,SRDF,SRDS,DTOQP
1225 FORMAT [1HO,3X, CORRELATIGN TIMES OF CORRELATED NOISE,DMINJO, OAX, NAT 4&4O
```

```
    1FF.3.19X.F7.3/14X,*S.D. OF CORRELATED NOISF (KPS):.37X.F7.3,
```



```
        19x,F7,3,//4X,#S,F, OF MEASIREMENT ERRORS (KTS)*,35x,F7,3.
    4 19X,F7,3,/4XX, IINTERVAL GETWEEN MEASUREMENTS -*,FA,3,
    5 MINGTES*)
```



```
        WRITE (MM11235)
= 二35 FERMAT (1HD,56X,#GMEGA MEASUREMENT DATA*/56X,13(?H- 1/170X, NAT 4S?O
    | FIRST L.O.P.*,12X,*SECOND L,O,P.*)
:
            READ (NN,75) 10M1,IOM2,IOH3,IOM4,TOM1,TOM2,SNOM1,SNOM2,SBOM1,
            2 SBOM2,SROM1,SAOM2,DTOM
    75 FGRMAT (4;11,4X),6510.3/8E10.3)
            WRITE (MM,1240) (STAT(1,IO41).!:=1.2),(5TAT(I,IOM3),!=1,2),
            1 (STAT(I,IOM2),1=1,2),(STAT(1,IMMA),I=1,2),TOM1,
            TOM2,SNOM1,SNGM2,SROM1,SBOM2,SROM1,SROM2,DTOM
```



```
    1 14X,A8,A2/1
```



```
    * OF 日IAS ERRORS (MICRO-SEC)*,37X,F7.3,17X,F7,3//4X,*S,D.*. NAT 4ABO
    4 OF RANDOM ERRORS (MICRO-SEC)O, 35X,F7, 3,17X,F7,3/14X, NAY 4670
        5 |NTERVAL GETNEEN MEASUREMENTS -*,F8,j,* MINUTES*)
    1245 IF (.NOT. SATRNG) GO TM 1260
        WRITE (MM,1250)
    125: FORMAT (1HD,56X, WATELLITE RANGING DATA*/56X:13(2H. ///72X,
    1 *SATELL!TE 1*,14X,*SATELLIPE 2*)
c
            READ (NN, 80)SATLON,TSAT1,TSAT2,SVSAT1,SNSAP2'SBSAT1,SBSAT2,
            1 SRSAT1,SRSAT2,DTSAT
    CO FORMAT (8EIO.2)
            WRITE (MM,1255)SATLON,SNSAT1,SNSAT2,TSAT1,TSAT2,SGSAY1,
            1 SBSAT2,SRSAT1,SRSAT2,DTSIT
    1253 FGRMAT (1MO,3X,*LGNGITUDE (DEGI:,54X,F7,2,18X,F7,2//4X,
            GGORRELATION TIMES (MIN)*,46X,F7,2,18X,F7,2,
            //4X,*S,D. QF CORRELATED NO!SE (MICRO-SECI*,33X,F7,2,18x,
            F7,2//4X,*S,D. ©F BIAS ERNORS (M!ERO-SEC)*,38X,F7,2,18X,F7.2/
            /4X,*S,D, GF RANDGM ERRORS IMICRO-SECI:'36X,F7,2,18X,F7,2/4X,
            *INYERVAL BETWEEN MEASUREMENTS -*,FB.3,* MINUPES*)
c
    1200 IF (.NGT,SUBOPT) GO TO 1400
            READ (NN,85) NK,T日LUND
        85 FORMAT (12,8x,E10,2)
            READ (NN,OO) (TSUGK(1),l=1,NK)
        On FORMAY (8E10.2)
            CALL SUBOUT(-2)
            IF (TBLUND.LE,0,0)G0 T0 1264
            WRITE (MM,1261)TBLUNG
1201 FORMAT (1H0,50X, &日LUNDER/MAGFUNCTION AT T M *,F7.2)
    SUSOPTE,FALSE.
1264 WRITE (MM,1265)
1265 FORMAT (1HO,56X,*SUGOPTIMUM GAINS USED*/56X.13(2H= ///)
    LINE=4
    IF (.NOT.DOPLER) go ie 1310
    DO 1208 IE1,NK
    READ (NN,90) (KSUBDF(I,J),J=1,34)
NAT 44E0
            NAT 44E0
            NAT 4ARJ
                vaT 44g0
                    NAT 4500
NAT 4510
NAT 4530
NAT 4540
                    NAT}455
NAT 4560
NAT 4570
NAT 4580
NAT 4590
NAT 4600
NAY 4010
NAT 4%20
    NAT 4630
    NAT}469
NAT 4710
NAT &710
l
```

```
{EEA REAE (NN,90) (KSLSUS61,J),J=1,34)
    wFIFE(MM,1270)
1:79 FGQMAT{1HO,5x, FFORHARD DOPPLER MEASUREHENT GA!NS *O)
LNE=1,NF+2
    EO E20 !=1,AK
    If (L!NE.GE,54) CALL SUBOUP(-2)
    WRITE (MM,1285) TSUBK(I),(HSU日GF(I,J):J=1,34)
ZEEの LINE=L\NE+4
1EE{ FGRMAT(9HO*** T = F5,1,BH M!N***,1X,10E11,3/(1X,12E11,4))
:2G? FORMAT (1H0,5X,*SIDEWISE DOPPLER MEASUREMENT GAINS I*)
:2S? FORME WH(TM,1200)
LVNE=LINE+2
LINE=LINE+2
    IF (LINE,GE,54) CALL SIIBOUT(n2)
    WHITE (MM,1285) TSUBK(I),(KSU日OS(I,J),J=1,34)
IZO9 L!NE=WINE*4
III9 IF (.NOT.OHEGA) GE TO 1350
    D0 1315 la1,NK
    READ (NN,9C) (KSLRO1(1,J),Ja1,34)
1こ15 READ (NN,PO) (KSLQO2(1,J),JE1,34)
    WRITE (MM,1320)
IJEO FORMAT (1H\cap,5X,&FIRST OMEGA L,O,P, GA|NS 1*)
    L|NE=L\NE * 2
    DO 1330 I=1,NK
    IF (LINE.GE,54) CALL SUBOUT(-2)
    WRITE (MM,1285) TSU日K(I),(KSUQ(1(I,J),Ja1,34)
1ミ30 LINE=LINE由4
    WRITE (MM,1335)
1335 FGRMAT (1HO,5X,由SECOND OMEGA L,O,P, GAlNS ,#)
LINE=LINE*2
    DO 1340 1#1.NK
    IF (L|NE.GE,54) CALL SUBOUP(-2)
    WRITE (MM,I285) TSUBK(1),(KSUBO2(l,J),J=1,34)
1740 LINE=LINE%4
1250 IF (.NOT,SATRNG) GOTO 1400
    DE 1355 !a1,NK
    READ (NN,90) (KSUESI(!,J),J=1,34)
    READ (NN,90) (KSUBSI(!,J),JE1,34)
1*2F WRITE (HM,1360)
1360 FORMAT (1HO,5X, 由FIRST SATELLITE AANGING GAINS &*)
    FIRMAT INE=HNE*2
    DO 1370 I=1,NK
    IF (LINE,GE,54) CALL SUBOUT(-2)
    WRITE (MM,12B5) TSUBK(I),(KSUBSI(I,J)IN=1,34)
1\70 L/NE=LINE+4
```



```
1JGO FORMAT \INQ,5X,由SECGND SATELLIPE RANGING GAINS :由)
LINE=HINE:2
LINE=INE:2
        IF (L\NE,GE,54) CALL SUSOUY{-2)
    WRIPE (MM,1285) TSUGK(I),(KSUBS2(I,J),J=1,34)
    1990 LINE=LINE*4
140G CONTINUE
C
    RETURN
RETURN
14":--5
M4% 5.0.3
NAT 5040
NAT 5055
N!: %is%
NAT 5A70
NAT 50日C゙
NAP 5070
NAT 5900
NAT 5110
NAT 5,920
N4=5,30
N4 5130
NAT =,50
NAT 59AO
NAY 5.7C
#АY 54, 人1]
*A-ジจ0
*AT 5%M?
NA" 52:.
NA% 5276
N4-52?0
N4* 5%4?
NAT 5750
NAT 526%
NAT 52:0
NAT 52:0
NAT 5200
NA+ 5300
NAF}531
NAT 5320
N4! 5330
NAT 5340
NAY 5350
NAT 5360
NAT 5370
NAT 5380
NAT 530C
NAT 5400
NAT 5410
NAT 5420
    NAT 5430
LICO LINE=LINE*?
    NA= 5440
    NAAT 5450
    NAT 5460
    NAT 5470
    NAT 5470
    NAT 5480
    NAT 5490
NAT 5500
    NAT 5520
    NAT 5330
    NAT 5330
    NA! 5550
    NA% 5560
NA%% 5570
```



```
    \becauseOSS=NCOTH
    IF (ALAT.LT,0,0, NORS=SOUTH
    ETCW=AEST
    If (:%NN,GT,O,O) ESQW=FASY
```



```
    E^=S\RT(ABS(P(1,1)))*M1NPRO
    EE=S.2RT(AGS(P(2,2);)*MINPRN
    EE=S.JRT(AGS(P(2,2)))由M\NPRN
    CH2=CTRK*CTR:
    CH2=CTRK*CTRK
    CLL=EL*CL
    LLA?=APS(P(4,4))
    O_ ᄀ2=ARS(P(5,5))
    -EMP=2,0*P(4,5)*STRK*CTRK*CL
    XX=RN:4*SORT(ABS(DLA2*CH2*DLO2*SH2*CLL+PEMP))
    YY=RNM-S\RT(AGS(HLA2-SH2+DLO2*CH2*CLL-FEMP))
    CVN2=ARS(P(6.6))
    CVE2=A AS(P(7,7))
    TEMP=2,O*P(6,7) & SYOK由C*AK#CL
    DXOOT=RNM*60.*SORT(ARS(DVN2*CH2*DVE2*SH2*CLL*TEMP))
    DYDOT=RNM*BO.*SORT(ARS(DVN2*SH2*DVE2*CH2*CLL*TFMP))
    VERTICAL ESTIMATES
        IF (npHASE,GT,1) Gm Yo 200
        EVD=RDHO
        DALT=OHO
        GO TM 220
    2CO CVD=SQRT({HDOT*TAUHD*O.O1)**2*SALTD*SALTD)
    2CO 
    220 IF (INS9) DVD=SORT(ABS(P(9,9)))/60,0
O
    IF (MEAS,GT,O) GO TO 300
        WRITE (MM,150) TIMEH,TIMEM,ALAPD,NORS,ILONL,EORW,TRKD,
    1 EN,EE,ED,XX,YY,DALY,DXDOF,DYDOY,DVD
    150 FGRMAT (1M,12,1H1,12,1X,2(F7,2,A2),F7,2,1X,3F9,4,1X,2F9,3,59,1,
        1 1 X,2F0,3,F9,y)
            GO TO-500
        LINE=LINE*I
        GO TO 500
C
    300 WRITE (MM, 350) TYPE(MEAS),EN,EE,ED,XX,YY,DALY, OXDOY,DYOOY,OVD
    300 WR!TE (MM, 350) TYPE(MEAS),EN,EE,ED,XX,YY,DALY,NXDOY,DYOOY,NVD
    LINE=LINE*2
C SET PLOY OUTPUT
500 \F (NPLOT,EQ.O) RETURN
    TEMP = TIME/60.
    WRITE PNTAPE; TEMP,EN,EE,ED,DALT,XX,YY,DVD,DXDOT,DYDOT
    NPLOTaNPLOT*1
    RETURN
    END
    \&4 夕系;
    4AOM, %
    \because&个 ダフこ
    !* 6!2?
    リム%640%
    MIT APCO
    N2T 6%13
NAT G%20
MAT S2?]
NAT 8 %40
NAY GフEA
NAT AつE?
NA+Nつ7,
&つ7に
    NAT &こ80
    NAT 6ว7E
    40% 为
NAT\leqslant3:?
    NAT 6.320
    N&% 63,3
    \4* 534!
    A: 5.4.G
```



```
    NAT S.550
    NAT S36J
\imath
    NT 5370
    NAT 6380
    NA
    NAP 640J
    Na! Na0.j
    NAF}641
-
    NAT 6420
    NAY 6430
    NAT66450
    NAT G443
NATY 5460
NAP6470
NA! 6480
NA% 64AO
NA% 65:0
NAI B500
NAT 6510
NAT 6520
NAT 6530
NAF 6540
NAT }65
    5
    NAT 6550
    NAT 6560
```



```
NAT 6560
NAT 65RO
NAT 6730
    NAT AGO
    NAT GGOD
    NAT 6%10
```

```
    SUSROUTINE CONFIG
r
    This subroutine sets the indices kk mf the neo
            DIFFERENTIAL EOUATIONS FOR THE COVARIANCE MATRIX
                0F fHE SPECIFIED AIDEO I.N.S. CONFIDURATION.
            THE CORAESPENDENGE geidEEN THE STATE VECTOR S AND THE
                COVARIANCE MATRIX P IS
                    S(k) = P(1,J)
            The elements of the l,N.s, state are selecied for the
                DESIRED MODEL BY MEANS OF THE LOGICAL PARAMFTERS GYROS.
                ACCEL, TGRG, ALTSF, GRAVD, iNSg, DOPLER,OMEGA,SAYRNG.
            THE 28 EQNS OF a 7-STAFE I.N.S. are always dMCluded IN
    COMMON /BINDEX/ 1:(585), JJ(585), KK(585)
    COMMON /8INTEG/ S(585),SD(585), DT,OTO5,NEC
    COMMON /BLOGIC/ GYROS,ACCEL,TORQ,ALYSF.GRAVDIINSO,TMAACC,
    1 COPLER,GMEGA,SATANG,SUBOPT,DREKON
    LOGICAL GYROS,ACCEL,TORQ,ALTSF,GRAYD,INSO,YWOACC,DAPLER,MMEGA,
                            SU8OPT,SATRNG,DREKON
                            7-STATE I.N.S.
    NEO=O
    CALL EONS{1,28)
                            THREE GYRO DRIFT SYATES
    IF (GYROS) CALL EGNS (29,55)
                            TWM acCELEROMETER UNCERTAINTIES
    120 IFP,NOT,ACCEL) GO YO 130
        L2=72
        IF (GYROS) L2=78
    CALL EONS (56.L2)
                            THREE GYRO TGROUER ERRORS
    L2=102
    130 IF (,NOT,PORO) GO TO 140
    IF` PYROSS L2=111
    CALL EONS (79.L2)
    IF (ACCEL) CALL EQNS (112,117)
C LLTMETER SCALE FAETOR ERROR
    140 lF (,NOT.ALTSF) OE PO 150
        L2:124
        IF (GYROS| L2=127
        CALL EONS (118.L2)
        IF (\triangleCCEL) CALL EGNS (128,129)
        IF (TORO) CALL EONS (130.132)
C
    150 IF (.NOT.GRAVD) GO TO 160
        L2:149
        |F (GYROS) L2=15s
        CALL EONS (133.L2)
        IF (ACCEL) CALL EONS (156,159)
        IF (TORQ) CALL EONS (160,165)
        IF (ALTSF) CALL EONS (160.167)
                            DOPPLER MEASUREMENT ERRORS
100 iF (.NOT,DOPLER) GO TO 170
    NAT GA3
    NAT 6G40
    NAT &850
    NAT}663
    NAT S.570
    Nat bs%o
    NAT 6890
    NA* 6700
    vat 6710
    NAT 6720
    NAT 6730
    NAT 6740
    NAT K750
    NAT}678
    SNAT 6770
    NAY G780
    NAP 6790
    NAT GAOO
    NAT}681
    NA! GR2O
                            NAT 6R30
    NAT 6A40
    NAT KA50
    NAT GASO
    NAY 6月70
    NAT GA80
    NAY 6890
    NAF 6000
    NAT 6010
    NA% 6020
    NAT }803
    NAT}604
    NAT 6050
    NAT}600
    NAY 6980
    NAT }607
    NAT}699
    NAT }700
    NATY 7010
                            TWG GRAVITATIONAL DEFLECTIONS
    NAY}702
    NA¢ 7030
    NAF 7040
    NAY 7050
    NA% 7060
    NAY 7070
    NAY 7080
    NAY 7080
    NAT 7100
    NAY 7110
    NAT 7i20
    NA% 7i30
    NAY 7930
    NAT 7140
    NAT}7\frac{1}{2
    NAT 7160
NAF 7i>0
NAT 7180
```

```
    Lz=23s
    if (GYDOS) L2=ここ5
    CALLL EONS (1AG,L2)
    if (ACOEL) CALL EONS (210,223)
    IF (F`口未) CA1L 50N5 (234.235)
    # ALTSFJ EALL EGNET230.239,
    IF (GRAVD, CALL EGNS (740,247)
- gmEga measuremeny erreors
170 1F (,NOT.OMEGA) GG TC }18
        L2=283
        If (GYROS) L2=295
        CALL EONS (248,L2)
        IF (aCCEL) CALL EGNS (296,303)
        if (TORO) CALL EONS (304,315)
        IF (ALTSF) CLLL EONS (316,310)
        IF (GRAVD) CALL FENS (320,327)
        :F (DOPLER) CALL EONS (3?5,343)
                            SATTELITE RANGING ERRORS
120 !F (,NOT,SATANG) GR PO 190
    L2=370
    IF (GYROS) L2=391
    CALL EQNS (344,L2)
    IF (ACCEL) CALL EONS (392.399)
    IF (TOPO) CALL EGNS (400,411)
    I5 (ALTSF) CALL EGNS (412.415)
    IF (GRAVD) CALL EGNS (416,423)
    IF (DOPLER) CALL EGNS (424,439)
    IF (OMEGA) CALL EONS (440,455)
G 9-STAPE !,N,5,
150 IF (.NOT.INSO) GO YO 300
    L2=472
    IF (GYRAS) L2=478
    CALL EONS (456.L2)
    IF (,NOT,ACCEL) GO TO 200
    L2=494
    If (GYROS) L2=497
    CALL EQNS (479,L2)
2:0 IF (.NOT.PORQ) GO TO 210
    L2=503
    If (ACCEL) L2=506
    CALL EONS (498.L2)
210 lF (,NOT.ALTSF) GO TE 220
    L2=508
    IF (ACCEL) L2=509
    C4LL EONS (507.L2)
    2zo if (,NAT.GRAVA) GE TO 230
        L2=525
        IF (GYROS) L2=528
    CALL EONS (510,L2)
        If (ACCEL) CALL EONS (529,533)
    IF (TORQ) CALL EQNS (534,536)
        IF (ALTSF) CALL EONS (537,537)
23n IF (.NOT.DOPLER) GO TO 240
        L2=545
        IF (ACCEL) L2=549
    CALL EQNS (538.L2)
```

 \(\because A=713:\)

- A 9 P290

40 703?

$\because A \div 7750$
UA- 7960
UA 7270
$\forall A 770$

- 4 : 7780
NA- $7=90$
NA: 730
va 7?:0

NAT 7 Bis
NA: 7.346
A1T 735 .
va $73+0$
NAT $7: 30$
NAT 7.3न

NAT 7.370
NAT
8.8

NAT 285
NAT $740 n$
Nat Tigo
NAT T4E:
NAT 74.30
NA 7440
nat 7a5c
MAT $74 A_{0}$
NAT 7470
NAT 74 AO
NAT 7400
NAT 7400
NAT 7500
NAT 7500
NAT 7510
NAT 7530
NA 7530
NAT 7540
NAT 7540
NA 7590
NA 7560
NAT 7570
NAT 750
NA 7500
NAT 7800
NAT 7A10
NAT 7820
NAY 7630
vaf 7640
NA 7 ASO
NA 7 7aso
NAT 7690
NA 760
NA 7890
NA 7700
NAT 7710
NAT 7710
NAT 7730

```
        1% (GRAVI) CALL EQNS (550,553)
    240 IF (,NOT,GMEGA) GQ YO 250
        L2=561
        If (\triangleCCEL) L2=565
        CALL EONS (554,L2)
        IT (GRAVD) CALL EGNS(566,569)
    250 1F (NOT,SATRNG) GO TO }30
        L.2=577
        IF (ACCEL) L2=581
        CALL EQNS (570.L2)
C IF (GRAVD) CALL EGNS (582,585)
30O CONTINUE
        RETURN
        END
NAT }775
C
NAT 77BO
NAT 7770
NA9 77RO
NA% 7790
NAT 7800
NAF 7R.0
NA* 7R2O
NA% 7830
NAY 7840
NAT 78SO
NAT 7860
NAT 7860
NAT 7A70
NAT 7RAO
NAY 7R90
```

```
    SURgRUTINE EONS (LI,L2) N:A% 70.3
    this sugroutine sets the indices Far those Eang to
    de infegrated in the array kk. neg !s the tmtal
```



```
        THE ARRAY TO EE INTEGRATED, S(L).
    COMMON/BCOVAR/ P{34,34)
    INDICES FOR COVARIANCE MATRIX
DATA (\\l(I),\=1,347) ■
    7(1),6(2),5(3),4(4),3(5),2(6),7,3(1),3(?),3(3),3(4),3(5),3(6),
    3(7),3(10),2(11),12,2(1),2(2),2(3),2(4),2(5),2(6),2(7),2(13),
    14,2(10),2(11),2{12),3(1),3(2),3(3),3(4),3(5),3(6),3(7),2(10),
    17,3(10),3(11),3(12),3(13),3(14),1,2,3,4,5,6,7,10,11,12,13,14,
    16,17,18,2(1),2(2),2(3),2(4),2(5),2(6),7(7),2(10),20, 2(10),
    2(11),2(1?),2(13),2(14),2(16),2(17),2(18),19,20,4(1),
    4(2),4(3),4(4),4(5),4(6),4(7),3(23),3(24),25,26,4(10),4(11),
    4(12),4(13),4(14),4(16),4(17),4(18),4(22),4(19),4(20),4(1),
    4(2),4(3),4(4),4(5),4(6),4(7),3(27),3(28),29,30,4(10),4(11),
    4(12),4(13),4(14),4(16),4(17),4(18),4(22),4(10),4(20),4(23),
    4(24),4(25),4(26),4(1))
DAFA ({ll(l),l=348,585)=
    4(2),4(3),4(4),4(5),4(6),4(7),3(31),3(32),33,34,4(10);4(11),
    4(12),4(13),4(14),4(16),4(1)),4(18),4(22),4(19),4(20),4(23),
    4(24),4(25),4(26),4(27),4(24),4(29),4(3n),2(1),2(2),2(3),2(4),
    2(5),2(6),2(7),2(8),9,3(8),3(9),1,2,3,4,5,6,7,3(8),3(9),3(15).
    8,0,15,1,2,3,4,5,6,7,3(0),3(9),19,20,21,10,11,12,13,14,3(15),
    16,17,18,21,4(8),4(0),4(15),4(21),4(B),4(0),4(15);4(21),4(8),
    4(9),4(15),4(21))
    DATA {JJ=1,2,3,4,5,6,7,2,3,4,5,6,7,3,4,5,6,7,4,5,6,7,5,6,7,6,7,7,
    8(10,11,12),11,2(12),8(13,14),14,3(13,14),7(16,17,18):
    17,2(18),5(16,17,18),15(22),8(19,20),20,8(19,20),2(22),
    7(23,24,25,26),2(24,25,26),2(26),11(23,24,25,26),
    7(27,28,29,30),2(28,29,30), 2(30),15(27,28,20,30),
    7(31,32,33,34),2(32,33,34),2(34), 19(31,32,33,34);
    8(8,9),9,2(10,11,12),7(15),2(13,14,15), (1 15), 3(16,27,18),
    3,22),7(21),2(19,20,21),8,21,,19,20,4(21),22,4,23,24,25,26),
    4(27,28,29,30},4{31,32,33,34})
C
    D0 100 L=L1,L2
    I=!!(L)
    J=JJ(b)
    NEQ=NEO-1
    KK(NEQ)=L
    100 S(NEO)EP(d,J)
C
RETURN
    NAT 701.0
3
C
C
-
:
END
```

SUPrgutine flpplnets		HAT	8410
$\stackrel{\square}{r}$		NAF	8420
$\stackrel{\square}{r}$	This subroutlne ealculates the nominal pasision，	NAT	8430
$\stackrel{\square}{\square}$	VELOCITY，ETC，OF PHE AIPCRAFT AS FUCTIONS OF	NAT	8440
？	TINE，A NEN WAYPOINT IS DEFINED AT PHE 日EQINMINS OE	oftat	A．50
？	THE prases of the flight are	vai	Pa建
$\stackrel{\square}{\square}$	NPHASE $=0$ INS ALIGNMENT	nat	8470
$\stackrel{\square}{\square}$	NPHASE $=1$ TAXJ	nat	8490
$\stackrel{\square}{0}$	NPHASE $=2$ CLIMBOUT	NAT	A490
－	NPHASE $=3$ CRUISE	Nat	8500
$\stackrel{+}{+}$	NPHASE $=4$ END OF FLIGH＇	NA ${ }^{\text {¢ }}$	8510
$\stackrel{ }{+}$		NA ${ }^{+}$	8520
	CGMMEN／BCONST／RAEPDG，DEGPRD，FTPNM，NMPFY，MINPRD，OMIE	NAT	8530
	CGMMON／BFLTPN／DTA，DTT，HO，VCL，RC，MCR，HCR，NWPTS，LAT（20），	NAT	8540
	1 LON（20），THETAW（20），VW（20），TCR，TM（20）；VN（20）．	－NAT	8550
	2 Vmmen Ve（20）	nat	8560
	COMMON／BINIT／INIT	nat	A570
	COMMAN／RNOM／NPHASE，H，HDOP，ALAPR，ALAT，ALON，ALONR，ALB，	nAt	A5月0
	$\begin{array}{ll} 1 & \text { ALBD日T, VG, VA, VELN, VELE, VELW, TRK, HDG; CRQ, } \\ 2 & \text { THW, R, RI, W } 12, G, S L, ~ C L, ~ T L, ~ S L 2, ~ C L 2, ~ C L!, ~ \end{array}$	NAT	8590
	3 RICLI，CPRK，STAK，MLAT2，CHDG，SHDG，RGL 3 ，CLi，	VAT	8.600
c	REAL MCR，LAT，LON，MMPFT，MINPRD	Nat	RA10
		NA	8820
	LOGICAL IMIT	NAT	8630
	OATA（OMIEs4．37527E＝3）	NAT	8640 8.50
	RADIUS（X） C 20925732．－70173，396＊S！N（X）＊＊2	Nat	Ags50 AGSO
\bigcirc		NAT	8670
	ALNF（X1，X2）EALOG（COS（X1）＊（1，＊SIN（X2））／（COS（X2）＊（1，＋SIN（X1）））	NAT	8，80
	IF（，NOT，INTT）GO TO 120	NA？	8690
$\begin{array}{r}\text { r } \\ \\ \\ \hline 15\end{array}$	initialization	NA ${ }^{\text {a }}$	8700
	NPHASE＝0	NAT	8710
	CONVIFFPPNM／60．	NAT	8720
	D0 $15 \mathrm{l}=1$ N NWPTS	NA！	8730
	LAT（I）＝LAF（I）RADPDG	NAT	8780
	LON（I）ELON（I）MRAOPOG	NAT	
	VW（！）EVW（1）CONV	NA¢	8770
15	THETAW（I）gTMETAW（I）WRADPDG	NAT	89780
		NAY	8790
	VCL 3 VCL ${ }^{\text {COENV }}$	NAT	8800
	TM（1）EDTAdDT	NA ${ }^{\text {¢ }}$	8810
	TCRE（HCR－HO）／RC＊TH（1）	NA ${ }^{\text {a }}$	8820
e	Calculate times at waypeints	NAṬ	8830
		NAṪ	8840
		NA ${ }^{\text {a }}$	8850
c		NA¢	Aato
10°	average Wind	nat	8870
	JMETAW（J）5＊（THETAW（ ${ }^{\text {J }}$（tMETAW（ $)$	NAT！	8880
	TAETAW（J）${ }^{\text {W，5＊（THETAW（J）＊THEPAW（1））}}$	NA	8890
		NA ${ }^{\text {¢ }}$	月900
	IF（TM（J），OE，TER） 30.20	NAT	¢900 8910
c		NAT	8920
20	CLIMB PHASE	NAT	8930
	VAEVCL	NA ${ }^{\text {¢ }}$	8040
	NaHO＋RC＊（TM（J）－TM（1））	NA＇	8050
	MUE1	NA ${ }^{\text {a }}$	8960

```
        CO-040
r
C. CRUISE PHASE
    30 VA=VCR
        H=Hi*R
        MU=0
5
    40 CLON=LON(!)-LON(J)
        OLAT=LAT(!)-LAT(J)
        R= RADIUS(.5*(LAT(1)*LAT(J)))*W
        IF (DLAT,EO,O.) TRK = SION(1,570796,DLON)
        IF (DLAT,NE,O.) TRK =ATAN2( DLAN,ALNF(LAY(J),LAY(I)))
        ALPHA=THEYAW(J) = PRK
        CRR =+AS\N(VW(J)*S!N(ALPHA)/VA)
        HDG = TRK *CRB
        VG=VA*COS{CRB \=VW(J)*COS(ALDHA)
        VN(J)aVG*COS(TRK )
        VE(J)EVG*SIN{TRK )
        IF (MLAT,EQ,0,) TM(!)ETM(J) &DLON*Q&COS(LAT(I))/VE(J)
        IF (DLAT,NE,O,) TM(I) =TM(J) *R由DLAT/VN(J)
    70 IF (MU,EO,O) GO P0 115
        IF (TM(|).FCR) 110.110,80
C
C NEW WAYPOINTS AT END OF CLIME
    8O DO 90 JJ=|,NWPYS
        K=NWPTS+|ه\J
        KK\approxK+1
        LAT(KK)=LAT(K)
        LON(KK)=LON(K)
        THETAW(KK)@PHETAW(K)
        g0 VW(KK)EVW{K)
        NWPTS=NWPYS*1
        LAT(|)=LAF(J)&VN(J)&(TCR-TM(J))/R
        TM(!)= FCR
        THETAW(I)&2,由THETAW(J)=THETAW(|)
        VW(!)=2, पWW(J)-VW(l)
        IF (DLAT.EO,O,) 6O T色 100
        LON(I):LON(J)+(VE(J)/VN(J))由ALNF(LAT(J),LAP(I))
        GO TO 110
    100 LON(1)=LON(J)*VE(J)/(R⿻COS(LAT(J)))*(TM(!)=TM(J))
    110 MU=0
    115 IF (I,EO.NWPYS) to YO 120
        I= !-1
        G0 90 20
C CHECK END OF FLIGHT
    120 |F (T,LT.YM(NWPTS\) 60 T0 122
        TETM(NWPTS)
        NPHASE|A
        1:NWPTS
        G0 FO 180
C
    122 IF (T,GE,TM(1)) OO PO 140
    NPHASE=O
    IF (T,GE,DTA) NPHASEEI
    IF {.NOT,INIT\ GO TO 130
C
```

```
M4- : : "
```

M4- : : "
N\&* ? :%
N\&* ? :%
NA* race
NA* race
NAY OnC.A
NAY OnC.A
N\&T G:13
N\&T G:13
NaT 002C
NaT 002C
NAM OCRO
NAM OCRO
NAT 904j
NAT 904j
NAY 90SO
NAY 90SO
vAT 90FO
vAT 90FO
MA= 9.70
MA= 9.70
NA: On=:
NA: On=:
NA" QnvE
NA" QnvE
NA= G%-5
NA= G%-5
"A" 0.10
"A" 0.10
*A" G2=0
*A" G2=0
Vん* %゙方う
Vん* %゙方う
UAF 9.4D
UAF 9.4D
NAT O,50
NAT O,50
NAT G\&EO
NAT G\&EO
NAT 917%
NAT 917%
NA" O_M:
NA" O_M:
NAT O.0.
NAT O.0.
NA? -R!C
NA? -R!C
NA* 5%a%
NA* 5%a%
NA: 9%20
NA: 9%20
NAT Q=30
NAT Q=30
NAT O%40
NAT O%40
NA* O250
NA* O250
N4: 92*:
N4: 92*:
NAT 9%70
NAT 9%70
NA% 9%80
NA% 9%80
NA+
NA+
NAT }930
NAT }930
NAF}931
NAF}931
NAY Q320
NAY Q320
NAT 9330
NAT 9330
NA + 0340
NA + 0340
NA% 0.350
NA% 0.350
NAT O3AD
NAT O3AD
NAF 9370
NAF 9370
NA% 93.0
NA% 93.0
NAT 9300
NAT 9300
NAY 9400
NAY 9400
NAY 9410
NAY 9410
NAT O420
NAT O420
NAF}943
NAF}943
NAT}944
NAT}944
NAT 9440
NAT 9440
NAF 9450
NAF 9450
NAT O460
NAT O460
NAY 9470
NAY 9470
NA'े 94AO
NA'े 94AO
NA% 9490
NA% 9490
NA% Q500
NA% Q500
NAT 951C
NAT 951C
NA% 9%20

```
NA% 9%20
```

```
            H=HO
            ALAT=LAT(1)
            ALON=LON(1)
            ALATR=0.0
            ALOANM=0.0
            HONT=0.0
            ALEDOT=OMJE
            VELW=VW(1)
            THW=THETAW(1)
            VA=0.0
            VG=0.0
            HDG=0,0
            TRK=0:0
            CRB=0,O
            VELN=0,0
            VELE=0,0
    1:0 ALG=LON(1)&OMIE*T
    GO T0 190
    140 IF (T,LT.PCR) GO TO }15
C
C. CRUISE MODE
    NPHASEES
    HDOT=O.
    H=HCR
    M=MCR
    VA=VCR
    G0 T0 160
C
    CLIMBOUT MODE
    NPHASE=2
    HDOTョRC
    DT=T-YM(1)
    HEHO&NDOT-OT
    H=VCL,(A(H)&CENV)
    VAaVCL
C
    140 l=2
    170 1F (T,LT.PM{I)) 0日 TO 180
    I = I+1
GO TO 170
C
    180 J=!-1
        DTaT-TM(J)
        VELN=VN(J)
    VELE=YE(J)
VG=SQRT(VELN+車2*VELE**2)
IF (VELN,EQ,O.) TRK ESIGN{1,570796,VELE)
IF (VELN,NE,O.) TRK EATAN2IVELE,VELN)
THW#THETAW(J)
VELWEVW(J)
CREEASIN(VELWASIN(THH-FRK)/VA)
HDG ETRK *CRD
R\bullet RADIUS!.S*(LAT(J)*LAT(|)))*W
ALATREVELN/R
ALAT=LGT(J)+ALATR@DT
ALONRE VELE/(R&COS(ALAT))
\begin{tabular}{|c|c|}
\hline NAT & 9530 \\
\hline NAT & 9540 \\
\hline NAT & 9550 \\
\hline NAT & 95A0 \\
\hline NAT & 2570 \\
\hline NAT & －580 \\
\hline NAT & 9590 \\
\hline NAT & 9800 \\
\hline NA \({ }^{\text {P }}\) & 9610 \\
\hline NAT & 9620 \\
\hline NAT & 9830 \\
\hline NAT & 9640 \\
\hline NA \({ }^{\text {P }}\) & 9850 \\
\hline NA \({ }_{\text {¢ }}\) & 9680 \\
\hline NAT & 9 A 70 \\
\hline NA \({ }^{\text {P }}\) & 9880 \\
\hline NAT & 9890 \\
\hline NAT & 9700 \\
\hline NAT & 9710 \\
\hline NAY & 9720 \\
\hline NAT & 9730 \\
\hline NAT & 0740 \\
\hline NAT & 9750 \\
\hline NAT & 9760 \\
\hline NAT & 9770 \\
\hline NAF＇ & 9780 \\
\hline NA \({ }^{\text {P }}\) & 9790 \\
\hline NA \({ }^{\text {P }}\) & 9800 \\
\hline NA？ & 9810 \\
\hline NAT & 9820 \\
\hline NA & 9月50 \\
\hline NA？ & 9＊40 \\
\hline NA & 9850 \\
\hline NAT & 9860 \\
\hline NA \({ }^{\text {P }}\) & 9870 \\
\hline NA？ & 9880 \\
\hline NAT & 9890 \\
\hline NAT & 9900 \\
\hline NAT & 9910 \\
\hline NAT & 9920 \\
\hline NAT & 9030 \\
\hline NA \({ }^{\text {P }}\) & 9040 \\
\hline NA & 9080 \\
\hline NA？ & 9960 \\
\hline NAT & 9970 \\
\hline NA \({ }^{\text {P }}\) & 9980 \\
\hline NA？ & 9890 \\
\hline NA \({ }^{\text {P }} 1\) & 0000 \\
\hline NAT10 & 0010 \\
\hline NAT10 & 0020 \\
\hline NA \({ }^{\text {P10 }}\) & 0030 \\
\hline NAT10 & 0040 \\
\hline NAT10 & 0050 \\
\hline NAT10 & 0060 \\
\hline NAT10 & 0070 \\
\hline NAT10 & 0080 \\
\hline
\end{tabular}
```

```
        IF (VELN,EQ,O.) ILONELMN(J)&ALONRODT
        IF (VELN.NE,O,)ALON=LQN(J) +(VELE/VELN)&ALNF(LAT(J),ALAT)
        ALQDOTUALONR+OMIE
        ALR=ALON+OMIF*T
    15j CALL EARTH (ALAT,H)
C
    NAT:0090
    VA=IC+MO
    \AT10110
    \4T10:20
RETURN
END
NAT10400
NAT1|!40
NAFIOL50
NAT101*0
NAT10170
```

	FUVCTIAN A (H)		NAT10180
\because		.	NAT10,90
6	SPEED df SOUnd funcition - A in knots		NAT10200
¢			NAT10310
	Data ($A 1=437847,),(A 2=3,008)$		HAT10, ${ }^{\text {a }}$
	IF (H,LE.36099, ${ }^{\text {a }}$ ASSQRY (A1-A2FH)		NAṪ10030
	IF $_{\text {ENT }}\left(H_{1} G T .36089,\right) A=573: 8$		NAT10240
			NAP10250

	SUBROUTINE EARTH(LAY,ALT)		$\begin{aligned} & \text { NAT1C760 } \\ & \text { NATIOP:2 } \end{aligned}$
C		THIS ROUT	RNATICフA/
-		THIS R	onatinこ70
$\%$		VECTOR A	- ATE0320
\ddot{c}			
C- LAT = LATTITUDE (AADIANS) NATIOB30			
$\stackrel{\square}{6}$		ALT $=$ a	NAT10350
$\stackrel{\square}{0}$			$\ddot{\sim}$
\square	COMMON/BNOM,	NPHASE,	NAT10390
	commen tinam	NPASE,	NAY10390
		THH, R,	NAT 10400
		RICLI, C	NAT10410
	REAL WAT MEL		NAT10420
	DATA (RE=20925732,) (F=0.00335345), (GE=32,0881),		NAT10430
			NAT10440
	$1 \quad(C 80.00529$		NAT10450
C	SLT2 $=$ SIN(LAT)**2		NAT10460
		* $T 2) * A L T$	NAT10470
	R=RE*(1.0EF-S	(T2)*AL	NAY104R0
c	Ga3600, $\mathrm{GE} \times(1,0+C * S L T 2) *(1,0-1, E * 7=A L T)$		NAT10490
c			NA¢10500
	RETURN		NAT10510
	$E_{N D}$		NA910520

	Sufroutive INS	NAT10530
		NAT10540
		NAT17550
C	CALCULATES THE SYSYEM MATRIX ELEMENTS FOP PHF	NAYı0SKO
－		$\because 910570$
\because	mayrix and nmise valuesi	NAT10580
Γ		NAT10590
	COUMOA／BALT／TAUH，SALT，TAUHD，SALTG	NAT10600
	COMMAN／BCANST／RADPDG，DEGPRD，FTPNM，NMPFT，MINPRD，RMIE	NAT106，10
	COMMAN／BCOVAR／P（34．3a）	NAT10820
	COMMON／RDRKN／SVWN，SVWE，DVWN，DVWE	NATEOS30
	CGMMOV APINIT／INIT	Natios40
		matinaso
	1 P PDHO：AKAD，PHIDOP，OMS2，ГN，FE，FD	NAT10660
		NAY10670
		NAY106A0
	2 SAX，SAY，SAZ，QVAX，QVAY，OVAZ，TAUX，TAUY，TAUT，	NAT10690
	3 DX，DY，DZ，SVX，SVY，SVZ，OVX，OVY，OVZ，OWH	NAF10700
	COMMAN／BlNS3／C11，C12，C13，C21，C22，C23，C31，C32，C33，	NAT10710
	1 F12，F13，F17，F21，F23，F31，F32，F37，F62，F63，F64，F66，	NAY10720
	F67，F68，F69，F71，F73，F74，F76，F77，F78，F79，F91，F92，	NAT10730
	3 F94，F96，F97，F9R，WX，WY，WZ	NAT10740
	CEMMON／日LOGIC／GYR日S，ACCEL，TORG，ALTSF，GRAVD＇，INS9，PWOACC；	NAT10750
	1 L DGPLER，日GEGA，SATANG，SUBOPT，DAEKON	NAT10780
	CGMMEN／BNOM，NPHASE，H，HDGT，ALATR，ALAT，ALON，ALONR，ALB，	NAT10770
	1 ALPDCT，VG，VA，VELN，VELE，VE！W，TRK，HDG；CRB，	NAT10780
	2 THW，R，RI，RI2，G，SL，CL，PLi，SL2，CL2，CL！，	NAT10790
	3 R RICLI，CTRK，STRK，ALAT2，CHDG，SHDG，RCL	NATIOROO
	COMMON／BTJME／TIME	NAT10月10
	REAL NMPFT，MJNPRD	NAT10日20
	LOGICAL INIT，GYRGS，ACCEL，TORO，ALTSF，GRAVD，INS	NAP10830
	OMEGA，SATRNG，SUBOPT，DRFKMN	NAT10A40
		NAT10850
	SL＝SIN（ALAT）	NATIDAB0
	CL＝COS（ALAT）	NAT10A70
	TLast／CL	nationao
	ALAT2－2，ALAT	NAT10890
	SL？asin（AbAT2）	NAT10900
	CL2．COS（AbATz）	NAF10910
	CLIE1，／CL	NAY 10920
	ACL $=$ RaCL	NAY10930
	RI＝1．0／R	NAF10040
	R12FR！＊R！	NAT10050
	RICLIaRI＊CL！	NAT10980
	$C L A=C O S(A L B)$	NAT10970
	SLBaSlN（ALB）	NAF10080
	STRK＝SIN（PRK）	NAF10990
	CTRKロCOS（PRK）	NAF11000
	SHDGPSIN（HDG）	NAT11010
	CHDG＝COS（HDG）	NAT11020
		NAFI1030
	OMS2ag＊RI	NAP11040
	IF（，NOT．INIT）GO TO 200	NAT11050
c		NAY11060
	OM!PNX=0.0	NAT11070
	OMIPNY＝0．0	Nat11080


```
    P(10.10)=(SGX*CONV)**2 NAT11A50
    P(11,11)=(SGY*CONV)**2
    P(12.12)=(5Gz*CONV)**2
c
    30 IF (.NOT,ACCEL) 32.35
    Z2 OWAX=QWAYMOWAZ=0.0
        GO T0 40
c
    35 CONV=216000,
        CONVERT FT2/SEC3 TG FT2/m|N3
        OWAX=OWAX=CONV
        P(15,15)=(5AZ*G)**2
        OWAY=QWAY&CONV
        OWAZ=OWAZ*CONV
C
        TAXE1,/TAX
        TAY=1,/TAY
        TAZ=1,/TAZ
            CONVERY G TG FT/M!N2
        QVAX=2.*TAX=(SAXEG)**2
        QYAYE2, TAY=(SAYEG)=e2
        QVAZ=2,*PAZ*(SAZ*G)**2
C
    P(13,13)=(SAX*O)**2
    P(14,24)=(SAY*(i)**?
        P(14.14)=(SAY*G)=#2
        P(15,25)=(SAZ*G)*&2
C
    40 IF (,NOT,PORQ) GO TO 50
        P(16,16) =(PAUX*0.01)**2
        P(17,17)={TAUY*0,01)=02
        P(18,10)=(PAUZ*0.01)**?
c
    50 IF (.NOT.gRAVD) GO po 60
C
    DXRDXGFTPNM
    QY=DYBFTPNM
    DZ=DZ#FTPNM
    DX=1./DX
    DYE1./DY
    D2=1.102
C
    QVXz2,*DX*(SVX*G)**2
    OYY&2,*DY(SSVY*G)**2
    QVZ&2,*DZ*(SVZ*O)***2
C
    P(10,19)=(SVX-G)=02
    P(20.20)=(5VY0G)0e2
    P(21,21)=(SVZ*G)**2
C
G& IF (,NET.ALTSFI OE TE 70
    P(22,22)=(TAUM*0.01)002
        OWHESALTOSALT
C
70. If (.NOT.DRENEN) 00 $0 100
NAT11660
NA\11G70
NATIIGAO
NAT11400
NAF11700
NAT11710
NAT11720
NAT11730
NAT11740
NAT11880
NA(11750
NAT117A0
NAP11770
NAT11780
NAT11790
NAT11ADO
NAT11月10
NAY11820
NA!11830
NAP11840
NAT11850
NATI1ABO
NAT11870
NAT11870
NAT118AO
NA 111890
NAP11000
NAT11010
NAT11020
NAT11930
NAT11940
NA 111950
NAP11960
NAT11070
NA 11980
NAY11090
NAY12000
NAT12010
NAT12020
NAP12030
NA 12040
NA 12050
NA 912060
NAP12070
NAP12080
NAP12090
NAT12100
NA12110
NAT12120
NA 12 Iso
NA 12140
NAP12iso
NA P12140
NA12970
```

```
        DVWN=FTPNM听WN
        DVWE=FPPNMWDVWE
        DVWN=1./DVWN
        EVWE=&./DVWE
    IVWEZF,/DNNE CONVEAT KTS TO FP/MIN
        CGNV=FTPNM/60.
        QWX=2,*DVWN*(SVWN*CONV)**2
        OWY =2, ODVF*(SYWE-CONV)+C2
C
    P(6,6)={SVWN=CONV*R{)**2
        P(7,7)=(SVWE*CONV*R!CLI)由#2
C
    100 FN=2.*HDCY*ALAYR*O.5*AL1*SL2*R
        FE=2,*ALBDCT由(-R由ALATR*SL*HDOT*CL)
        FD=R (ALI*CL*CL*ALAPR*MLAPA)-G
!
C
    ELEMENTS OF SYSTEM MAYRIX
    F12=-ALBDCT*SL
    F13=ALATR
    F14EF12
    F17=C!
    F21E-F12
    F23=ALBDOT*CL
    F31:-F13
    F32=-F23
    F37&-SL
E
        IF (.NOT.DREKON) GO PO 105
        F66z-VG*DVWN-HDOTMR!
        F77=-VG*DVWE-HDGT*RI*ALATR由TL
        OWAX=QWX*VG
        OWAY=OWY*VE
        GO TO 120
C
    105 F62=-FD*R!
        F63=FE*R!
        F64ymAL1*CL2
        F66=-2,*HDOT*R!
        F67=-ALBDOT-SL2
    F6B=-D.5*RI*AL1*SL2
    F69:-2.*ALAFROR!
    F71=FD*RICL.!
    F73=-FN*R!CL!
    F74=2,*ALBDOT* (ALATR*HDEY*R!*TL)
    F76:2,*ALEDEY*'L
    F77=2,*(AGAT苃*FL=HDOT*R!)
    F7A|RI由ALATR|F76
    F79a-2,*R|*AL8DET
C
    !F (TWOACC) 00 TO 110
    FO1EFE
    F92=-5N
    F94aR.AL1-SL2
    F96=2, 由R"ALAFR
```

MA12 180
NAT12190
NATI2200
VAT12210
NiT12720
NA712230
NAT12240
NAT1？．250
NAT122K0
NAT12270
NAT122RO
NAT12290
NAT12300
NAT12310
NAF12320
NAT12350
NAT：2340
NAT12350
NAT12360
NATI2370
NAP12380
NAT12390
NAPI2400
NA 12410
NAT12420
NAP12430
NAT12440
NAT12450
NA竍12460
NAT12470
NAT12480
NAT12400
NAT12500
NA T12510
NAY12520
NA $\ddagger 12530$
NAY12540
NATI2550
NAT12560
NAT12570
NAT12580
NAT12500
NA Ỵ12A00
NAT12610
NA 12620
NAT12630
NAT12640
NAP12650
NAT12860
NAT12670
NAP12880
NAT12690
NAT12700
NAT12710
NAT12720
NAF12750

```
        F97=2,*F*ALBEOT*CL*CL NAT12740
        F98=-(AKAP-2.)*OMS2*RI*(FD*G) NAT12750
    饣
    11% if (ISYS.GP.1) G0 T0 120
        11=-5L*CLE
        C12a-8L*SLA
        C13=CL
        C21=-5LB
        C22=CLB
        C31:-CL*CLB
        C32a-CL"SLR
        C33:-SL
        G0 T0 200
C
    120 0M!PNX=ALBDOT*CL
        OMPPNY=-ALATR
        GMIPNZ=-ALBDMT*SL
        G0 T0 (200,200,130,140,150,160,170),15YS
c
    130 OMIPNZ=0.0
        PSIDOT=ALBDOTOSL
    1:S PS!=PSI+PS!DOT*(TIME-TPSI)
        TPSI=TIME
        C11mC0S(PSI)
        C12=-SIN(PS!)
    1こ7 C21:-C12
        C22=C11
        GO TO 200
C STAAPDOHN (ISYS : 4)
    140 C11=CHDG
        C12|-5HDG
        G0 T0 137
C ROTATING AZIMUYH (ISYS = 5)
    150 PSIDOTEPHIDOT
        GO T0 135
        UNIPOLAR (ISYS = 6)
    1EO PHIDOTAALONR
        CI1-COS(ALON)
        C12a-5IN(ALON)
        G0 TO 137
C
    170 PSIDOT&ALENR*SL
                            WANDER AZIMUPM (!SYS = 7)
        PHIDOT=PSIDOT
        G0 10 135
C
    200 WX FCII*SMIPNX*C2I#EMIPNY由C3IOOMIPNZ
        WY EC12*OMIPNX+C22*OMIPNY*E32*OMIPNZ
        WZ ECI3:BMIPNX*C2J*日MIPNY*ESS*OMIPNZ*FHIDEF
C
    RETURN
    END
NAT12750 NAT12760 NAT12770 NAT127日0 NAT12790 NAT12500 NAT12810 NAY1？820 NAT12A30 NAT12A40 Nati2a50 NAT12A60 NAT17870 NAT12880 NAT12890 NAT12000 N4T12910 NAT12920 NAT12030 NAT12940 NAT12930 NAT12960
NAT12070
NAT12090
NA 12990
NATI3nतo
NAT13！10
NAT13020
NAT13030
NAT13040
NAT13050
NAF13030
NAT13070
NATI3080
NAT13090
NAT13100
NAT13110
NAT13120
NAT13130
NAT13140
NAT13950
NAT13160
NAT13170
NA 113180
NAP13100
NA 13200
NA 13210
NA 113220
NAY13230
NA 13240
NAT13250
```



```
        SUBROUTINE DOPLR NAT13670
C
        THIS SUGROUTINE CALCULATES THE mEASUDEMENT VECTORS, NATIS3600
        AND CPTIMUM FILTEF GAINS, ANG IJPDATES FHE
        COV#R!ANCE MaTR!Y FOPT GOPM FOHWAHD AND SIDEWISE
        COMMON/ECONST/RADPDG,DEGPRD,FPPNM,NMPFT, MINPRD, GMIE
        COMMON /BCOVAR/ P(34,34)
        COMMON /GOOPLR/ TDF,TOS,SNDF,SNDS, SBDF,SBDS', SRDF,SADS,
        1 DTOEP,ODF,ODS, RDF, RDS
        COMMON /B!NIT/ INIT
        COMMON/BLOGIC/ GYROS,ACCELITORQ,ALTSF,GRAVDIINSO,TWOACC,
        1 DOPLER,OMEGA,SATRNG,SUBOPT,DAEKON
        COMMON/BNOM/ NPHASE,H,HDOY,ALATR,ALAT,GLON,ALONR, ALB,
                ALBDAT, VG, VA, VELN, VELE, VELW, PRK, HOG; CRG,
                THW, R, RI, R|2, G, SL, EL, TL: SL2, CL2; CL!,
                RIELI, CYRK,SYRK, ALATZ, CHDM, SHDG,RCL
        COMMON /BUPDAT/ LLFA,KOPT(34), MPYPE
        REAL KOPT,NMPFT,MINPRD
        LOGICAL GYROS,ACCEL, FGRQ,ALTSF,GAAVD, JNSO, TWOACC,DOPLER,OMEGA,
        l
                            SATANG,INIT,SUBAPF,DREKON
                    DEPPLER VELOC!FY MEASUREMENTS
    IF(,NOY,INIT) GO TO 10,
    TDF#1,0/TDF
    TDS=1,0/TDS
    CONV=FTPNM/60.
    QDF=2,O*TDF*(SNDF*CONV)**2
    OCS=2,O*TDS*(SNDS*CENV)**2
    P(23,23) ={SEDF=0,01)**2
    P{25,25}={SEDS*0.01}**2
    RDF=(SRDF*CONV)*&2
    RDS=(SRDS*CENV)**2
    RETURN
C
    100 VSIDE\VG*SIN(CRE)
    VFWD=VO*CES(CRB)
C
C
    H3=-V5IDE
    H4amR*ALONR*SL*SHDG
    H6=R*CHDG
    H7=R*CL*SHDG
    H8=0.0
    H22=0,0
    TEMP=ALATR*CHDG*AGONR&EL*SHDG
    IF (,NOT, PHOACC) HOGPEMP
    IF (TWOACCJH22=H GTEMP
    H23GVFWD
    H24E1,0
    H25开0,0
    H26-0,0
    MTYPESS
    OO YO $00
C
200 HJSVFWD
SIDEW!SE DGPPLER VELGEITY MEASUREMENP VEETOR
NATI37nO
NAT13710
NAT13720
NA\i3730
NAT13740
NA P13750
NAT13760
NAP13770
NAT13780
NAY13790
NAT137%O
NAT13R10
NAT13R20
NATI3&30
NAT13月40
NAT13850
NAT13860
NATI3月70
NATI3ABO
NAT13880
NATI3000
NAT13910
NAT13920
NAT13930
NATI3940
NAT13050
NAT13050
NA413970
NAY13970
NAT13990
NAT14000
NA\Psi%4010
NAY14020
NAT14030
NAF14040
FORMARD DOPPLER VELOCITY MEASUREMENT VECFOR NAT14050
NAT14050
NAT14070
NAT14080
NAT14OOD
NAP14100
NAT14110
NAP14110
NAF14130
NAT14140
NAF14750
NAT149.50
NAT14160
NAT14170
NAT14180
NAT14190
NAP14200
NAT14210
NAFI4220
```

```
            HA=-ROALCNR*SL*CHEG
            HG}=-R*SHD
            H7=R*CHDG*CL
            TEMP=ALONR=CL~CHDG-ALATR*SHDG
            If (,NNT,TNSASC) प्रB=?54?
            If (TWAACC) H22=HaTEMP
            H23=0,0
            H24=0,0
            H25=VSIDE
            H26=1,0
            MTYPEFA
C
    300 DO 310 1=1,34
    I1\cap KOPY(I)=H3*P(1,3)*H4*P(1,4)*H6*P(1,6)&H7*P(1,7)+H8*P(1,8)
        1 +H22*P(I, 22)*H23*P(1, 23)*H24*P(I, 24)&H25*P(1, 25)
        \ddot{z}}\quad+H26*P(1,26
            ALFA =H3*K@PY(3)*HA*KOPT(4)*HG*KOPT (6)*HT*K&PT(7)*H8*KOPT (8)
        1 *H22*KQPY(22)*H23*KODY(23)*H24*(KOPY(24)*RDF)
        2 *H25*KOPT(25)*H26*(KOPY(26)*RDS)
            [0 32n In1,34
    32n KOPT(!)=KOPT(I)/ALFA
C
            CALL UPDAYE
            IF (MYYPE,EQ,3) GO TO 200
C
            RETURN
            END
```

NA：14クシ
NAT1474C
NAT：4250
NAT：42s
NンT： $4=97$
NAT14789
NAY14 4900
NAT14300
NAT：4： 25
NAY1432
NAT14336
NAY：43A0
NAテ14\％品
NAT 14360
NA： $143^{\circ} 0$
NAT143n6
NATI4390
NAT14400
NAT144：0
NA114420
NA 14430
NAT14440
NAT14450
NAT14460
NAT14470
NATI4480
NAT14490


```
c
r
    * ALA=AZF(IORI)
        AZQ=AフF(10M2)
        :27=2,0
        H28=1,0
        H29=0,O
        H30=0,0
        MTYPE=5
        GE TO 100
C
    70 AZA=AZF(1OMJ)
        AZBnaZF(IGM4)
        H27=0,0
        H2B=0;'n
        MTYPE=6
        H2.=1,0
        H3n=1,0
C
    100 H4 =R (COS(AZA)=COS(AZB))/PHVEL
        H5 =R (SIN(AZA)=SIN(AZB))巴CL/PHVEL
C
C
CALCULATE OPTIMUM GAINS
        DQ 120 I=1,34
    120 KOPT(|)=H&*P(1,4)*H5*P(1,5)*H27*P(1, 27)*H28*P(1, 28)*H29
        1 &P(1,29)&H3O&P(1,30)
            ALFA=H4*KOPT (4)*H5*KOPT (5)*H27*KOPT(27)*
        1 H28*(KOPT(28)&ROM1)*H29*KOPP(29)*H3O*(KOPT(3O)&ROM2)
            C0 140 I=1,34
1AO KOPT(I)=KOPF(1)/ALFA
        CALL UPDATE
        IF (MYYPE,EQ,5) G0 PO 70
C
    RETURN
    END
                OMEGA LINE-OF MPOSITION MEASUREMENT VECYORS
        FIRST MEASUREMENT
```

 NAT15070
 NAT15080
 \(N \therefore \dot{N} 25000\)
 NはTまうと訽
 NAY15110
 NAT15120
 NAY15:30
 NAT゙15140
 NAT15190
 NAT15180
 NAT15170
 VAT15190
 NAT15190
 NAT152nO
 NAT15210
 NAY15220
 NA 125730
 NAT15240
 NAT15250
 NAT15760
 NAY15270
 NAT15280
 NAㅍ15290
 NAT15300
NA甲15310
NA 15320
NAT15330
NA 15340
NAT15350
NAT15360
NA 15370
NAT15380
NAT15390
NAT15400


```
FIRST SATELLITE
    EC H31=1,0
        H32=1,0
        433:3,0
        H34:20,0
        MTYOEAT
        G0 TC 100
r
    70 H31=0,0
        H32=0,0
        HS3=1,0
        H34=1,0
        MTYPE=8
C
    1CO MEAS=MTYPE-G
        OLON=SATLON(MEAS)-ALON
        CLCN=COS(DLON)
        RPSN(1)=SRSAT(MEAS)*CL-CRSAT(MEAS)*SL*CLON
        RHSN(2)=CRSAT(MEAS)*SIN(DLON)
        RPSN(3)= -(SRSAT(MEAS)*SL*CRSAT (MEAS)*CL*CLQN)*R
        TEMP=1,0/SQRT(RPSN(1)**2*RPSN(2)*&2*RPSN(3)**2)
c
    H4 =R0RPSN(1)*TENP
    H5 =RCL*RPSN(2)*TEMP
    IF (,NOT,TWOACC) NS =RPSN(3)*QEMP
    IF (TWOACC) H22 aH GRPSN(3)*FEMP
    CALCULATE OPYIMUM GAINS
        D0 120 I=1,34
    12O KOOT({)=H4&P(I,4)&H5*P(I, 5)*H8*P(1,8)*H22*P(1, 22)*
        1 H31*P(1, 31)*H32*P(1, 32)*H33*P(1, 33)*H34*P(I,3A)
        ALFA=H4*KGPT(4)&H5*K@PT(5)&H8*KOPT(8)&H22*KOPT (22)*
        1 H31*KOPY(31)&H320(KOPY(32)*RSA91)&H33*KOPT(33)*
        2 H34*(KOPY(34)*RSAT2)
            DO 140 I=1,34
140 KOPT(!)=KOPT(I)/ALFA
        CALL UPDAYE
        IF (MTYPE,EQ.7) GO PO 70
C
    RETURN
    END
```


UAT15080
NA: 15090

NA?16016
NAY16020
NA: 16030
NAT16040
NAT16050
NAT16060
NA716070
NAT160BO
, AT 16090
NAT 18100
NAT16110
NA:15:20
NAT 16130
NA:16140
NAT16190
VAT16:80
VAT16170
VA $116: 80$
VA 16190
VA 16200
NAT16210
NAY 16220
NAT16230
NA 116240
NA $5: 6250$
NA 116260
NA 116270
NAT16280
NA 1.6290
NAT 16300
NAT16310
NA 916320
NAT16530
NAT16340
NAY 16350
NA916360

```
    SLRROUTINE UPDATE MATI6370
n
c
THIS SUBRGUTINE UPDATES THE COVARIANCE MATRIX FOR NATF16390
NAT16380
OPTIMUM OR SUROPTIMUM MEASUREMENTS, IF A SUPOPTIMUMNAT16400
GAIN HISTARY IS SPEEIFIED, THE SUROPTIMUMM GA!NS AOE NAIIO41G
FOUNE GY LINEAR INTERPOLATION, NAY16420
NAT16420
    COMMON /GCOVAR/ P(34,34)
NAT16440
    COMHON/B!NDEX/ II(585), JJ(585), KK(585)
    COMMON /BINTEG/ S(585).SD(585), DT,DTO5,NEO
    COMMON /BLOGIC/ GYROS,ACCEL,TORQ,ALTSF,GRAVD,INSO,TWMACC; NAT16470
    1 DOPLER,OMEGA,SATRNG,SUEOPT,DREKON NAT16480
    COMMON /BSUBOF/NK,TSUBK(20),KSUBDF(20,34), KSURDS(20;34), NAT16490
    1 KSUBO&(20,34), KSUAO2(20,34), KSU日S1(20,34),
    Z2 KSUBS2(20,34%,PGAINS NAT16510
        COMMON/BT!ME/TIME
    COMMON /BUPDAT/ ALFA,KOPT(34), MPYPE NAT16530
    REAL KOPT,KSUB, KSUBDF,KSUBDS,KSUBO1,KSUBO2,KSURS1,KSUES2 NAT16540
    OIMENSION XK(20,34,6),KSUB(34)
    EQUIVALENCE (XK(1),KSUADF(1)),ITIME,T)
    LOGICAL GYROS,ACCEL,TORQ,ALTSF,GRAVD,INSO, YWOACC,DAPLER,OMEGA,
    1 SATRNG,SUBOPY,DREKON
    IF (MTYPE,LE.2) GO YO 10
    IF (SUPOPT) GO TO 100
                OPTIMUM FILTER GAINS
    10 D0 50 1=1,34
    D0 50 J=1,34
    P(!,J)=P(!,J)=ALFA=KOPT(!)*KOP`(J)
    50 P(J,1)|P(l,J)
            WRITE QUY QPYIMUM GAINS
    IF (PGAINS,EQ,O,.OR,MTYPE,LE.2) O0 T0 300
    WRITE (7) TIME,MTYPE,(KOPT(!),\11,34)
    GO 10 300
                    SUBGPPIMUM FILPER GAINS
                    interpolate far subortImum gains
100 IF (T,OT. PSUBK(1)) GO P0 110
    IJ:1
102 D0 105 M=1,34
1C5 KSUB(M)=XK(IJ,M,MTYPE-2)
    G0 T0 145
110 De 120 1=2,NK
    J=1=1
    IF {T,LT.TSUBK(I)) GO T0 130
120 CONTINUE
    lJ.NK
    G0 P0 $02
130 D1=(T-TSUBK(J))/(TSUBK(!)-TSUBK(J))
    D2=1.0=D1
    OE 240 M=2.34
    Z2 KSUBS2(20,34%,PGAINS NAT16510
    NAT16520
    NAT16540
    NAT16550
    NAT16560
    NAT16570
    NAT16580
    NAT16590
    NATIGG00
    NAT16610
    NAT16020
    NAF16,30
    NAT16A40
    NAT16\Delta40
    NAP16660
    NAT16670
    N4T16600
    NAT16600
    NAT16700
    NAT10710
    NAT16720
    N4T16730
    NAT16740
    NA916750
    NAY16760
    NAT16770
    NAT16780
    NAT16700
    NAT16800
    NAT16800
    NA$16810
    NA?16:20
    NAT16830
    NAP16840
    NAF16850
    NAP16860
    NAT16870
    NAl16800
    NAP16890
    NA$16000
    NAT16010
    NA116010
```

```
    140 KSUB(M)=D1*XK(1,M,MYYPE-2)&D2*XK(J,M,MTYPE-2)
    145 [G 150 1=1,34
            DG 150 J=1,34
            \cap(1,J)=P(!,J)-ALF{*(KSUB(I)*KQPT(J)*(KOPT(!)nKSU日(!))*KSUB(J))
    12^P(J,l)=O(!,J)
C
c SET S ARRAY
    3CL GC TO (310,350,310,350,310,350,310,350,310),MTYPE 1.
    310 DO 320 L=1,NEQ
        K=KK(L)
        I=11(K)
        J=JJ(K)
    3&0\quadS(L)=P(I,J)
C
350 RETURN
    END
```

NATIAS30
NAT16จ40
NAT16950 NA 16250 NA? 16970 NAT 16980 NAT16900 NA $\uparrow 17 \cap 00$ NAT17n10 NAT17020 NAT17030 NAケ17040 NAT: 7050 NAT17060 NAT17070 NAT17090 NAT17090

```
    SURROUTINE RKUTTA
RLNGEFKUTTA INTEGRATION ROUTINE - FOURTH ORDER
    CEHUQN/BCOYAR/ P{34,34)
    COMMON /B!NDEX/ II(585), JJ(585), KK(585)
    CCMMON /BINTEG/ S(585),SD(585), DT,DTOS,NEG
    COMMON/BTIME/TIME
    DIMENSION B1(585), B2(585),83(585),SI(5A5)
    EQUIVALENCE (TIME,T)
    CALL DIFEG(T)
    IF (DT,EQ,O,O) RETURN
    DE 2 N=1, NEQ
    SI(N)=S(N)
    B1(N)=DT*SM(N)
    & S(N)=S!(N)*,50日1(N)
        TT=T+DT05
        CALL DIFEG(TT)
        DE 4 NE1,NEO
        O(N)=DT+SD(N)
    4 S(N)=S!(N)+,5&日2(N)
        CMLL DIFEG(TT)
        DO 6 N=1,NEQ
        83(N)=DT*SD(N)
        TT=T+DT
        6 S(N)=Sl(N)*日J(N)
            CALL DIFEQ(TT)
            OO N NEL,NEO
```



```
        K=KK(N)
        IEII(K)
        J=JJ(K)
        P(J,l)=S(N)
    e P(I,J)=S(N)
        T#TY
C
            RETURN
            END
```

NAT17100
NAT17110
NAT17120
NAT17130
NAT17140
NAT17150
NAT17160
NAT17170
NATIT1AO
NAT17190
NATI7クロ
NAT17210
NAT17220
NAな17230
NA 117240
NAT17250
NAT17260
VA 917270
NAY17280
NAT17200
NAT 17300
NAT17310
NAY 17320
NAT̈ 17330
NAT17340
NAY17350
NAT17360
NA917370
NAY17380
NAT17390
NA 17400
NA个17410
NA 174420
NA 17430
NAT17440
NAY17450
NAT17460
NA 117470
NAT17480

```
    SLRZOUTINE DIFEQ(TIME) NAT17490
\Gamma. NAT17500
C. SETS THE PRQPER ELEMENTS OF Phe COVAR|aNEE MATRIX NAT17510
C
C
            SETS THE PROPER ELEMENTS OF THE COVARIANEE MATRIX
                    and calculates the neg derivatives po be INTEgrated Nat17520
CCMMON/GCOYAR/ P{34,34)
CCMMON/GCOYAR/ P{34,3&)
    COMMON /日!NTEG/ S(585),SD(585), DT,DTOS,NEQ
C
C
SEt P-matrix values
        DG 100 LEI,NEO
        K=KK(L)
        I=\I{K}
        J=JJ(K)
        P(I,N)=S(L)
    100P(J,I)■P(!!, )
C
    DO 200 L=1,NEO
        KEKK(L)
        lE!|(K)
        lE!!(K)
    200 SD(L)ET(I,J)+T(J.1)*GOG(IIJ)
    RETURN
    END
                                    NAT17530
NAT17540
NAT17550
NAT17560
NAFY17570
    NAT17580
DG 100 LEI,NEO
NAT17590
NAY17600
NAT17610
NAY17&&20
NAT17R30
CALCULATE DERIVATIVES
NAF17640
NAF17650
NAF17650
NAT17670
NAF17580
NAT17600
C
NAT17700
NAT17710
NA917720
    END NAY17750
```

```
        FUNCTION T(I.d) NAT17740
        COMpute elements of ff mataly
```



```
        COMMON /BDOPLR/ TEF,TDS,SNDF,SNDS, SBDF,S日DS; SRDF,SRDS,
    ICOMMON / EINSI/ISYS,FEEO, ENO,EDO,DLAO,DLOO,ROLAO,RDLOO,DHO,
    RODHO,AKAP; PHIDQY, QMSZ,FN,FE,FD
    { OMMON /8INSZ/GGX,TGY, GGZ,OWZ,TAX,TAY,TAZ,QWAX,OWAY,OWAZ,
                QVGX,QVGY,OVGZ,TAX,TAY,TAZ,QWAX,OWAY,OWAZ,
                DX,DY,DZ,SVX,SVY,SVZ,QVX,QVY,QVZ,QWH
    CO4MON /8,NS3/ C11,C12,C13,C21,C22,C23,C31,C32,C33,
    1 F12,F13,F17,F21,F23,F31,F32,F37,F62,F63,F64,F66,
                                F94,F96,F97,F98,WX,WY,WZ
    COMMON /BLOGIC/ GYROS,ACCEL, PORO,ALTSF,GRAVD,INSO,TWOACC,
    1 DOPLER,OMEGA,SATRNG,SUBOPT,DREKON
    COMMON/BNGM/ NPHASE,H,HDOT,ALITR,ALAF,ALON,ALONR, ALB,
    1 ALBDOT, VG, VA, VELN, VELE, VELW, TRK, HOG, CR8,
        THW, R, RI, R!2,G, SL, CL, PL, SL2, CLZ, CL!,
                RICLI, CTRK,STRK, ALAT2; CHDH, SHDG,RCL'
    COMMON /BOMEGA, IOM1, IOMZ, IOMS, IOM4, TOM1; TOMZ, SNOM1, SNOM2,
    1 SBOM1, SHOM2, SROM1,SROM2,DTOM,OOM1,OOM2,
    2 ROM1,ROM2
    COMMON /BSATR/ SATLAT(2),SATLON(2),HSAT(2),TSAT1,TSAYZ,
    1 SNSAT1,SNSAT2,SBSAT1,SBSAT2,SRSAT1,SRSIT2,
    2 OTSAT,OSAT1,OSAT2,RSAT1,ASATE
    LOGICAL GYROS,ACCEL,TGRQ,ALTSF,GRAVD,INSO,TWOAEC,DOPLER,GMEGA,
    1 SATRNG,SUBOPT,DREKON
C
    G0 T0 (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,16,16,10,20,21,16,
    116,24,16,20,16,20,16,30,16,32,16,34,,1
1
    TEF12*P(2,J)+F13*P(3,J)+F12*P(4,J)+F17*P(7,J)+C11*P(10,J)+C12*
    1}P(11,J)+C13-P(12,J)+WX+C11*P(16,J)+WY*C12*P(17,J)+WZ+C13*
    2 P(18,J)
    RETURN
    F=F21*P(1,J)+F23*P(3,J)-P(6,J)*C21*P(10,J)*C22*P(11,J)+C23*P(12,J)NAT1818120
    1 +WX*C21*P(16,J)*WY*C22*P(17,J)*WZ*C23*P(18,J)
    RETURN
    T=F31*P(1,J)+F32*P(2,J)+F32*P(4,J)*F37*P(7,NJ)+C31*P(I0,J)
    1. C C 2*P(11,J)*C33*P(12,J)*WX*C31*P(16,J)+WY*C32*P(17,J)
    2*W2*C33*F(18,J)
        RETURN
| F=P(6,J)
        IF (NPHASE,EQ.O) i m 0.0
        RETURN
        TEP(7, J)
        IF (NPHASE,EO.O) Y = 0:0
        RETURN
e T=F62*P(2,N)+F63*P(3,J)+F64*P(4,j)*F66*P(6,j)+F67+PP{9,J)*F68
    1
    2 rP(19,j))
    [F (,NOT,PWOACC) RETURN
    T=T*(F68*H*F6O*HDGT)*P(22,J)
```

0

```
        RETJRN
        T=F71*P(1,j)*F73*P(3,j)+F74*P(4,j)+F76*P(0,j)+F77*P(7,j)+F7日
        1.D(日,J)*F79*P(9,J)*RICLI*{C21*P(13,J)*C22*P(14,J)*C2J
    2 P(15, 人)+7(20,j)
        IF (.NOT,iWOACC) RETURN
        T=T*(F78*H+F79*HDGT)*P(22,J)
        RETURN
        T=P(9,J)
        RETURN
        T=F91*P(1,J)*F92*P(2,J)+F94*P(4,J)*F96*P(6,J)*F97*FP(7,J)*F98
    1. FP(B,N)-(C31*P(13,J)+C32*P(14,J)+C33*P(15,J))*P(21,J)
    2 *AKAP*EMS2*H*P(22,J)
        RETURN
10 T=-TGX*P(10,J)
    RETURN
    11 T=-TGY*P(11,J)
    RETURN
    TE=TGZ*P(12,」)
    RETURN
13 T=-TAX@P(13,j)
    RETURN
    14 YE=TAY@P(14,J)
    RETURN
    15 T=-TAZ*P(15,J)
        RETURN
1e T=0.
    RETURN
    19T=-DX*P(10.J)*VG
        RETURN
    20 Pa=DY*P(20.J)*VG
        RETURN
    21 T=~DZ*P(21,J)*VG
        RETURN
    24 T』-PDF*P(24,J)
        RETURN
    26TEmTDS*P(26, J)
        RETURN
    28 TB-TOM1*P(28,J)
        AETURN
    O TE-TOM2*P(30,J)
        RETURN
    32 T=-TSAT1*P(32,J)
        RETURN
    34 T=-TSAT2*P(34,J)
C
        RETURN
        END
```

NAT18300
NAT18310 NAT18320
NA：12．33 NAT12340 NAT18350 NA 19360 NATIB370 NAT18380 NAT18390 NAT18400 NAT18410 NAT18420 NAT 18430
NAT18440
NAT18450
NATI8460
NAT18470
NATIEA80
NAT18490
NAT18500
NAT18510
NAT18520
NAT18530
NAT18540
NAT18550
NA 18560
NA 18570
NAT18580
NAT18900
NAT18B00
NAT18610
NAT18820
NAT18630
NATY8640
NAT18650
NATIB660
NAT18670
NAT18680
NAY18600
NA 18700
NAT18710
NAT18720
NAT18730
NAT18740
NAT18750
NAFI8760

```
        FUNCTION GGG(I.J)
        compute elements of driving noise matrix - - G gT
```



```
        1 OTOOP,QUF,QUS, RDF, ADS
        CGMMON / G!NSI/ISYS,EEN, ENO,EDO,ELAO,DLOO,RHLAC,ROLOO,DHO,
    1 RDHO,AKAD, PHIDOY, DMSZ;FN,FE,FD
        COMMON /BINSZ/TGX,TGY,TGZ,OWOX,QWGY,QWGZ,SGX,SGY,SEZ;
    1 OVGX,QVGY,QVGZ,TAX,TAY,TAZ,QWAX,OWAY,QWAZ,
    2 SAX,SAY,SAZ,OVAX,QVAY,OVAZ,TAUX,TAUY,TIUUZ,
    CGMMON /RINSZ, C,DY,DZ,SVX,SVY,S'ZZ,QVX,QVY,QVZ,QWH
    1 F12,F13,F17,F21,F23,F31,F32,F37,F62,F63,F64,586.
                    F67,F68,F69,F71,F73,F74,F76,F77,F78,F79,F91,F92,
                                FO4,F98,F97,F9%,4X,WY,WZ
    COMMON /BNOM/ NPMASE,H,HDOT,ALATR,AGAT,ALQN,ALONR, ALB,
    1 ALBDOT, VG, VA, VELN, VELE, VELW, YRK, HOGG, CRB,
        THW, R, RI, Rl2, G,SL, CL, FL', SL2, CL2, CL!,
        RICLI,CTRK,STRK,ALAT2,CHDG,SHDG,RCL
    COMMON /GCMEGA/ IOM1, IOM2, IOMZ, IOM4, TOM1; TOM2, SNOM1, SNOMZ,
    1 SOOM1, SBOM2, SROM1,SROM2,DTOM,OAM1,NOMZ
    2 ROMI,ROM2
    COMMON /BSATR/ SATLAT(2),SATLON(2),HSAT(2),TSAT1,TSATZ,
    1 SNSAT1,SNSAT2,S8SAT1,SRSAT2,SRSAT1,SRSAT2,
c
    If (I,LE.J) GO TO m
    II=1
    I= J
    J=1!
        G0 T0 (10,20,30,14,14,60,70,14,90,100,110,120,130,140,150,14,14,
        1 14,190,200,210,14,14,240,14,260,14,280,14,300,14,320,14,340j, 
```



```
    10 IF (J,GT.4)G0TE 14, NAT19100
        GO TO (11,12,13,14),J
    11 GQG=C11*C11*OWGX*C12*C12*OWGY*C13*C13*OWG2
        RETURN
    12GOG=C11*C21*OWGX+C12*C22*OWGY*C13*C23*OWG2
        RETURN
    13GGO=C11*C31*QWGX*C12*C32*QWGY*C13*C33*QWGZ
        RETURN
    14 GOG:O:O
        FETURN
C =0 1F (J,0T, () 1=2
    20 [F (J,GT.4) OO TO 14
        G0 T0 (21,22,14),N-1
    21 GOG=C21*C21*OWGX+C22*C22*OWGY+C2S*C23*OWGZ
        RETURN
    22 GQG=C21*CJ1-0WGX+C22*C32*OWGY&C23-C33*OWGZ
        RETURN
e
30 IF {J,GT,4) GO T0 14
        G0.t0 (31,14),J.2
#g GOG&CJ1*C3I*OWGX +C32*C32*OWGY+C33*CJS*OWGZ
    RETURN
```

NAT18770
$\stackrel{c}{6}$
compute elements of driving noise matrix－o gt
 1 DTOQP，QUF，QD3，RDF，ADS

RDHO，AKAD，PHIDOP，OMSZ；EN，FE，FD
OVGX，QVGY，QVGZ，TAX，TAY，TAZ，QWAX，OWAY，QWAZ， SAX，SAY，SAZ，oVAX，QVAY，oVAZ，TAUX，TAUY，TAUZ， DK，DY，DZ，SVX，SVY，SVZ，OVX，QVY，QUZ，OWH
COMMON／RINS3／C11，C12，C13，C21，C22，C23，C31，C32，C33，
1 F12，F13，F17，F21，523，F31，F32，F37，F62，F63，F64，F86， F94，F98，F97，F9月，4X，WY，WZ
COMMON／BAOM／NPMASE，H，HDQT，ALATR，ALAT，ALQN，ALONR，ALB，
1 TLADOT，VG，VA，VELN，VELE，VELW，TRK，HOG＇，CRB， THW，R，RI，R12，Gi SL，CL，PL＇SL2，CL2，CL！， RICLI，ETRK，SYRK，ALAT2，CHDG，SHDG，RCL S日OM1，SBOM2，SROM1，SROM2，DTGM，OOM1，OOMZ， ROM1，ROM2 SNSAT1，SNSAT2，S8SAT1，SRSAT2，SRSAT1，SRSAT2．
$\begin{array}{ll}1 & \text { SNSAT1，SNSAT2，S8SAT1，SRSAT2，SRSA } \\ 2 & \text { OTSAT，GSAT1，QSAT2，RSATI，RSAT2 }\end{array}$
e
F（I，LE．J）GO TO 5
$1 I=1$
$I=\mathrm{J}$
GO T0 $110,20,30,14,14,80,70,14,90,100,110,120,130,140,150,14,14$,
1 14，190，200，210，14，14，240，14，260，14，280，14，300，14，320，14，340j，
10 IF（J，GT．4）GOTE 14
GO T0（11，12，13，14），J
11 GQG＝C11＊C11＊OWGX＋C12＊C12＊OWGY＊C13＊C13＊OWG2
RETURN
12 GQG＝C11＊C21＊OWGX＊C12＊C22＊QWGY＊C13＊C23＊OWGZ
RETURN
13 GQG＝C11＊C31＊OWGX＊C12＊C32＊OWGY＊C13＊C33＊OWGZ
RETURN
feturn
C 20 IF（J，GT．4）OQ TO 14
21 GOG＝C21＊C21－OWGX＊C22＊C22＊OWGY＊C2S＊C23＊QWGZ RETURN
 RETURN
e
30 If $(J, G T, 4)$ OO TO 14
 RETURN

NAT18780
NAT 1 B＞00
natibano
NAT1才a10
NAT18820
NAT18a30
NA 18 1840
NAT18850
NAT18860
NAT18870
NAT18880
NAT18R90
NAT18900
NATIRO10
NAT18920
NAT18930
NAT18940
NAT18950
NAT18960
NAT18070
NATIROAO
NAT18990
NAT19000
NAT19010
NAT19020
NAT19030
NA919040
NAT19050
NAT19080
NAT19070
NAY19080
NAT19090
NAT19100
NAT19110
NAT19120
NAT19130
NAT19140
NAT19150
NAT19160
NAT19170
NAT191．BO
NAP19190
NA 19200
NAF19210
NA 12920
NA 119230
NA 19340
NA＂199250
NA 119260
NA＂19270
NA＇19280
NA119290
NA＂19300
NAl19310
NAY19320

```
~
    *G IF (J,GT,10) GN TE 14
        GE TO (61,62,14,63,14),J-5
    *1 riGT=Q!2*(C11&C11*WWAX*C12*C12*QWAY*C13*C13*QWAZ)
        PETVWN
    Ez GWG=RI*RICLI*(C11*C2I*OWAX*C12*C22*OWAY+C13*C23*OWAZ)
        RETURN
    E3 GQG=-RI*{C11*C31*GWAX+C12*C22*OWAY+C13*C33*OWAZ)
        RETURN
? l=7
    7U IF (J,GT.10) GO TO 14
        G0 TO (7i,14,72,14),J=6
    71 GGG=R1CLI*AICLI*(C21*C21*QWAX+C22*C22*OWAY*C23*C23*QWAZ)
        RETURN
    72 GUG=-RICLI*(C2I*C31*OWAX*C22*C32*QWAY*C23*C33*OWAZ)
        RETURN
C Ia9
    &0 !F (J,GT.10) G0 TO 14
        GO TO (91,14),J-8
    C1 GGG=C31*CJ1*GWAX*C32*C32*QWAY+CJ3*C33*OWAZ*(AKAP*OMS2)**?*2WH
        RETURN
C 1=10
    IUM IF {J,GT,11) GO TG 1A
        G0 T0 (101,14),J-0
    1LIGQG=OYGX
            RETUHN
C. 1:11
    110 IF (J,GT.12) GO T0 14
        GG T0 {111,14\:J-10
    111 GOG=OVGY
        AETURN
C 1=12
    120 IF (J,GT,13) GO FO 1#
        GC T0 (121,14),J=11
    121 GQGEQYOZ
        RETURN
C
    130 IF (J,GT.14) GO P014
        G0 T0 (131,14):J.12
    131 GOG=OVAX
        RETURN
C IE14
    140 IF (J,GT.15) GO TO 14
        G0 T0 (141,14),j-13
    141 GQGzQYAY
        RETURN
C Ia15
    150 IF (J,GT,16) GO PG 14
        G0 FO (151.14),J=14
    151 GOG=QVAZ
        RETURN
C IE19
    190 IF (J,GT.20) GO FO 14
        G0 T0 (191,14),J-18
1F1 GQG=OVXGVG
        REPURN
```

NAT193?
NAT19340
NAT19350
NAT:9350
NAT:9370
NAT19380
NAT19390
NAT19400
NAT19410
NAT19420
NAT19430
NAT19440
NAT19450
NAT19460
NAT10470
NAT19450
NAT19490
NAT19500
NAT19510
NAT19520
NAT195?
NAT 19540
NAT19550
NAT19560
NAT19570
NAT19520
NAT10590
NAT19600
NAT19610
NAT19620
NAT 19630
NAT19A10
NAT19650
NAT19660
NAT 19670
NAT19680
NAT19690
NAT19700
NAY19710
NAT19720
NAT19730
NAT19740
NATI9750
NAT19760
NA 19770
NAT19780
NAT19790
NAT19800
NAT 19810
NATI9820
NAT 19830
NAT19840
NAT19850
NAT19860
NAT19日70
NATI9880

```
: I=20
    ZCO 1f (J,GT.21) GO TE 14
        GO T@ (201,14),J-19
    2C1 GQG%2VY*VG
        RETUAN
C. I=21
    210 IF (J,GT,22) GO TO 14
        GE TO (211,14),J-20
    z11 GQG=OVZ*VG
        RETURN
C. I=24
    240 IF (J,GT.25) GO TC 14
        GG T@ (241,14), J-23
    241 GQG=QDF
        RETURN
C I=25
    2€0 If (J,GT.27) GO TE 14
        G6 YO (261,14), J-25
    2\leqslant1 GCG=ODS
        RETURN
C. I=28
    ZEO IF (J,GT.29) GO TQ 14
        GO YO (281,14), J-27
    2E1 GQG=QOM1
        RETURN
c
    3CO IF (J,GT,31) GO TO 14
        GO TO (301,14), J-29
    Sil GGG=QOM2
        RETURN
C 1a32
    320 IF (J,GT,33) GO Y0 14
        G0 TO (321,14), J=31
    3 2 1 ~ G Q G = O S A T 1 .
        RETURN
C I=34
    340 IF (J,GT,35) GO TO 14
        G0 T0 (341,14), J-33
341 GQG=OSAT2
        RETURN
        END
```

NAT19R90
NAT19000
NAT17910
NAT:Cg20
NAT:9930
NAT19940
NAT19950
NAT19960
NAT19970
NAT19980
NAT19990
NAT20000
NAT 20010
NAT 20020
NAT20030
NAT 20040
NAT 20050
NAT 20060
NAT 20070
NAT 20080
NAT 20090
NAT 20100
NAT20110
NAT20120
NAT20130
NAT20140
NAT 20150
NAT 20160
NAT 20170
NAT20180
NAT20i90
NAT 20200
NAT 20210
NATT20220
NAT20230
NAT20240
NAT 20250
NAT20260
NA 920270
NAT20280
NAT20290


```
        AY=0.25
    4&5 CALL SYMBCL PAX,AY,0.07,6HWAYPY.,0.0.6, NAT21R90
        * CENTINUE
        If (LL,E0,5) LL=1
        If (LL.EO,7) LL=5
        JJ=\コ一1
C
    5? CALL SCALE MABEL ORDINATE
        CALL AXIS(0,O,O,O,YTIT(K),MMIL),AYLEN{J)=,5,90.,DVY,YM!N,DY,
    1 4HF6.2)
        IF (J,EQ.8) L=4
        If (J,EQ.7) L=3
        IF (J,EQ.6) L=3
        If (J,EQ.5) L=2
        IF (J,EQ.4) L=1
        If (J,GT,4) K=K-2
        If (J,LE,4) K=K-1
                DLAT CURVE
        CALL LINE (X,Y,NPYS,1,-1,0,0,0)
    ICG CONTINUE
    RESET FOR NEXT RUN
        GALL PLOT (7.0.10.0,-3)
    CALL PLOT (0.0,0.0,-2)
C
    9CO RETURN
        END
NAT21900
NAT21910
NAT21920
NAT21930
NAT21%40
NAT21950
NAT21060
NAT21970
vAT210P0
NAT21990
NAT22000
NAT22010
NAT22020
NAT22030
NAT22040
NAP22050
NAT22060
NAT22070
NAT22080
NAT22090
NAT22100
NAT221.10
NAT22120
NAT22130
NAY22140
```


REFERENCES

1. Hoffman, W. C., Hollister, W. H. and Britting, K. R., "NAT Aided Inertial Navigation System Simulation. Volume I: Final Technical Report", ASI-TR-73-14, (DOT-TSC-473-73-1), Aerospace Systems, Inc., Burlington, Mass., January 1973.
2. Anon., "Control Data 3400/3600/3800 Computer Systems: Fortran Reference Manual", Control Data Corp., Pub. No. 60132900, 1966.
3. Anon., "Control Data 3600/3800 Computer Systems: Drum Scope Reference Manual", Control Data Corp., Pub No. 60059200B, 1967.
4. Houston, J. H., " 3800 Computer Integer Date Request Subroutine", NRL Memorandum Report 2008, NRL Computer Bulletin 10, Naval Research Laboratory, Washington, D.C., February 1969.
5. Chang, D., "A Fortran Subroutine for the Great Circle Distance Between Two Points and Bearings at the Points", NCN32, NRL Research Computation Center, September 1, 1969.
6. Chang, D., "A Fortran Subroutine for Locations and Bearings at Given Distances from a Starting Point Along a Great Circle Path", NCD 33, NRL Research Computation Center, September 1, 1969.
7. Hoffman, W. C., Hollister, W. M. and Simpson, R. W., "Functional Error Analysis and Modeling for ATC System Concepts Evaluation", ASI-TR-72-9, DOT-TSC-212-72-1, Aerospace Systems, Inc., April 1972.

[^0]: *DATE is currently a non-standard library routine at NRL. A Compass deck, available from NRL, must be included with the NATNAV source deck (Ref. 4).

